scholarly journals The Contractile Mechanism in Obliquely Striated Body Wall Muscle of the Earthworm, Lumbricus Terrestris

1971 ◽  
Vol 8 (2) ◽  
pp. 413-425 ◽  
Author(s):  
M. F. KNAPP ◽  
P. J. MILL

Obliquely striated muscle fibres from the longitudinal and circular layers of the body wall of the earthworm were prepared in extended and contracted states for study in the electron microscope. Contracted fibres differ from extended ones in the following respects: (i) the I-bands are narrower, (ii) the A-bands are wider, and (iii) there are more rows of thick myofilaments in each A-band. The arrangement of the thick and thin myofilaments in interdigitating arrays and the occurrence of cross-links between the 2 types of myofilament indicate a classical sliding-filament mechanism of contraction as in cross-striated muscle, resulting in a reduction in the I-band width. The increase in the A-band width could be due to a moving apart of the myofilaments during contraction to preserve constant volume of the lattice. The third change, the increase in the number of rows of thick myofilaments in the A-band, can be explained only by a shearing of these filaments past one another in such a way as to increase the amount of their overlap. The role of the sliding-filament and shearing contraction mechanisms in bringing about the changes observed in earthworm muscle fibres is considered and the possible correlation of these mechanisms with certain physiological data is discussed. The function of the sarcoplasmic reticulum in the transmission of impulses to the interior of the fibre and/or in the control of the contraction mechanism is also discussed.

1970 ◽  
Vol 7 (1) ◽  
pp. 233-261
Author(s):  
P. J. MILL ◽  
M. F. KNAPP

The fine structure of obliquely striated muscle fibres from the body wall of the earthworm has been investigated. Certain details of the structure have been confirmed by cutting serial sections. The fibres contain both thick and thin myofilaments. The latter are attached to Z-material and the 2 types of myofilament are arranged in interdigitating arrays to give rise to A- and I-bands and an H-zone similar to those in cross-striated muscle. The A-bands contain both thick and thin myofilaments and the I-bands only thin myofilaments. The Z-material is rod-shaped and these Z-rods, oriented perpendicular to the sarcolemma, are arranged in numerous parallel rows which run obliquely along the length of the fibre A line drawn parallel to the longitudinal fibre axis through a Z-rod in one row passes through a Z-rod in the next row. A thin, sheet-like array of myofilaments lies between 2 such Z-rods, forming a single sarcomere containing an A-band and 2 I-bands. The flat surfaces of neighbouring sarcomeres are directly apposed to one another but, since the rows of Z-rods run diagonally along the length of the fibre, each sarcomere is displaced longitudinally with respect to the next, so that the A- and I-bands follow an oblique course, instead of a transverse course as in cross-striated muscle. Because of the regular stagger of the sarcomeres A- and I-bands are cut alternately in transverse sections. Also the sarcomeres are very narrow and are seen as bands lying perpendicular to the sarcolemma. In the A-band a variable number of thin myofilaments (up to 12) surrounds each thick one. Cross-links have been seen between the 2 types of filaments. In longitudinal sections an appearance similar to that seen in cross-striated muscle is obtained in one plane (perpendicular to the sarcolemma). In the plane at right angles to this (parallel to the sarcolemma) the A- and I-bands are at an acute angle to the longitudinal fibre axis. The thick myofilaments exhibit a banding of about 15 nm. There is a system of transversely oriented tubules and peripheral vesicles with dyad-like structures occurring at the juxtaposition between the penpheral vesicles and the sarcolemma. It is concluded that this system is sarcoplasmic reticulam, and it is compared with tubular systems in other muscles. Other cellular constituents are described, including a peripheral skeleton of fibrillar bundles.


1957 ◽  
Vol 3 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Jean Hanson

1. The structure of the smooth muscle fibres in the longitudinal muscle coat of the body wall of Lumbricus terrestris has been investigated by phase contrast light microscopy and electron microscopy. 2. The muscle fibre is ribbon-shaped, and attached to each of its two surfaces is a set of myofibrils. These are also ribbon-shaped, and they lie with their surfaces perpendicular to the surfaces of the fibre, and their inner edges nearly meeting in the middle of the fibre. These fibrils are oriented at an angle to the fibre axis, and diminish greatly in width as they approach the edge of the fibre. The orientation of the set of fibrils belonging to one surface of the fibre is the mirror image of that of the set belonging to the other surface; thus, when both sets are in view in a fibre lying flat on one face, the fibre exhibits double oblique striation. A comparison of extended and contracted fibres indicates that as the fibre contracts, the angle made between fibre and fibril axes increases (e.g. from 5 to 30°) and so does the angle made between the two sets of fibrils (e.g. from 10 to 60°). 3. The myofibril, throughout its length, contains irregularly packed filaments, commonly 250 A in diameter, which are parallel to its long axis and remain straight in contracted muscles. Between them is material which probably consists of much finer filaments. Thus A and I bands are absent. 4. Bound to one face of each fibril, but not penetrating inside it, is a regularly spaced series of transverse stripes. They are of two kinds, alternating along the length of the fibril, and it is suggested that they are comparable to the Z and M lines of a cross-striated fibril. The spacing of these stripes is about 0.5 µ ("Z" to "Z") in extended muscles, and 0.25 µ in contracted muscles. A bridge extends from each stripe across to the stripeless surface of the next fibril.


1970 ◽  
Vol 7 (1) ◽  
pp. 263-271
Author(s):  
P. J. MILL ◽  
M. F. KNAPP

The fine structure of the neuromuscular Junctions in the body wall muscles of the earthworm is described. The segmental nerves send branches into the muscle layers. Axons in the nerve branches contain numerous synaptic vesicles and contact is established between these axons and muscle fibres or muscle tails; the latter may extend for a considerable distance from the muscle fibre. The cleft between the axolemma and sarcolemma is 85-120 nm wide and contains basement membrane material. At intervals small aggregations of electron-dense material are attached to the axonal membrane and synaptic vesicles are associated with these. The sarcolemma bears rather larger masses of dense material and is also specialized extracellularly.


1968 ◽  
Vol 48 (1) ◽  
pp. 217-225
Author(s):  
R. A. HAMMOND

1. Acanthocephalus ranae has been found to take up glyceryl tri[oleate-9,10-3H] solely through the surface of the trunk. The proboscis and lemnisci play no part in the uptake of this material. The large amounts of lipid present in the latter organs may be evidence of their involvement in lipid excretion. 2. Fat-soluble dyes are taken up by the animal and accumulate in lipid droplets in the lemnisci and proboscis wall. It is suggested that such dyes do not enter the animal through the surface of the proboscis, as has been suggested previously, but through the surface of the trunk. 3. The structure of the acanthocephalan body wall is discussed in relation to the uptake of nutrients.


1925 ◽  
Vol s2-69 (274) ◽  
pp. 245-290
Author(s):  
A. J. GROVE

During the sexual congress of L.terrestris, the co-operating worms become attached to one another in a head-to-tail position in such a way that segments 9-11 of one are opposed to the clitellum of the other, and vice versa. At these points the attachment between the worms is an intimate one, assisted by the secretion of the glands associated with the diverticula of the setal pores found in certain segments, and is reinforced by the mutual penetration of the setae into the opposed body-surfaces. There is also a slighter attachment between segment 26 of one and 15 of the other. Each worm is enclosed in a slime-tube composed of mucus secreted from the epidermis. The exchange of seminal fluid is a mutual one. The fluid issues from the apertures of the vasa deferentia in segment 15, and is conducted beneath the slime-tube in pit-like depressions in the seminal grooves, which extend from segment 15 to the clitellum on each side of the body, to the clitellum, where it accumulates in the space between the lateral surfaces of segments 9-11 of one worm and the clitellum of the other. Eventually it becomes aggregated into masses in the groove between segments 9 and 10, and 10 and 11, and passes thence into the spermathecae. The seminal groove and its pit-like depressions are brought into existence by special muscles lying in the lateral blocks of longitudinal muscles of the body-wall.


1964 ◽  
Vol s3-105 (71) ◽  
pp. 281-299
Author(s):  
ELAINE A. ROBSON

The integument of Peripatopsis moseleyi has been examined by light and electron microscopy with particular reference to the structure and formation of the cuticle. The evidence supports the idea that Peripatus is a true arthropod but not that it has direct affinities with the annelids. The characteristics of arthropod cuticle are present in their simplest form and pore canals and dermal glands are lacking. The cuticle is 1 or 2 µ, thick except in the hardened claws and spines. Above the procuticle (chitinprotein) is a thin 4-layered epicuticle. It is possible that the innermost of the 4 layers (prosclerotin) may correspond to cuticulin of other arthropods. In the claws and spines tanning in this layer extends to the procuticle. Hydrofuge properties of the cuticle probably depend on the outer layers of epicuticle, and it is suggested that the lamina concerned might consist of oriented lipid associated with lipoprotein (Dr. J. W. L. Beament). Wax and cement are absent. Non-wettability of the cuticle is probably ensured by the contours of micropapillae which cover the surface. Similar structures arise in Collembola and other terrestrial arthropods by convergence. The formation of new cuticle before ecdysis is described. After the epicuticular layers are complete, the bulk of the procuticle is laid down in a manner probably common to all arthropods. Secreted materials originate in small vesicles derived from rough endoplasmic reticulum and from scattered Golgi regions. The latter contribute to larger vacuoles which rise to the surface of the cell and liberate material in a fluid state. This later consolidates to form procuticle. Vesicles may also open to the surface directly, and ribosomes probably occur free in the cytoplasm. At this stage the cell surface is reticulate, especially under micropapillae. The ordinary epidermis has only one kind of cell, attached to the cuticle by tonofibrils disposed like the ribs of a shuttlecock, and to the fibrous sheaths of underlying muscle-fibres by special fibres of connective tissue. These features and the presence of numerous sensory papillae are associated with the characteristic mobility of the body wall. The appearance of epidermal pigment granules, mitochondria, the nuclear membrane, and a centriole are noted. No other cells immediately concerned in the formation of cuticle have been found. By contrast myriapods, which do not have wax either, possess dermal glands secreting far more lipid than is found in the Onychophora. The wax layer found in insects and some arachnids constitutes an advance of high selective value which emphasizes the primitive condition of the Onychophora. It is noted that the thick layer of collagen separating the haemocoel from the epidermis probably restricts the transfer of materials. It is suggested that since some features of cuticular structure and formation appear to be common to all arthropods, it is possible that some of the endocrine mechanisms associated with ecdysis may also be similar throughout the phylum.


Parasitology ◽  
2003 ◽  
Vol 126 (3) ◽  
pp. 273-282 ◽  
Author(s):  
M. T. STEWART ◽  
A. MOUSLEY ◽  
B. KOUBKOVÁ ◽  
š. šEBELOVÁ ◽  
N. J. MARKS ◽  
...  

The major muscle systems of the metacercaria of the strigeid trematode, Apatemon cobitidis proterorhini have been examined using phalloidin as a site-specific probe for filamentous actin. Regional differences were evident in the organization of the body wall musculature of the forebody and hindbody, the former comprising outer circular, intermediate longitudinal and inner diagonal fibres, the latter having the inner diagonal fibres replaced with an extra layer of more widely spaced circular muscle. Three orientations of muscle fibres (equatorial, meridional, radial) were discernible in the oral sucker, acetabulum and paired lappets. Large longitudinal extensor and flexor muscles project into the hindbody where they connect to the body wall or end blindly. Innervation to the muscle systems of Apatemon was examined by immunocytochemistry, using antibodies to known myoactive substances: the flatworm FMRFamide-related neuropeptide (FaRP), GYIRFamide, and the biogenic amine, 5-hydroxytryptamine (5-HT). Strong immunostaining for both peptidergic and serotoninergic components was found in the central nervous system and confocal microscopic mapping of the distribution of these neuroactive substances revealed they occupied separate neuronal pathways. In the peripheral nervous system, GYIRFamide-immunoreactivity was extensive and, in particular, associated with the innervation of all attachment structures; serotoninergic fibres, on the other hand, were localized to the oral sucker and pharynx and to regions along the anterior margins of the forebody.


1960 ◽  
Vol 37 (4) ◽  
pp. 775-782
Author(s):  
A. E. NEEDHAM

1. The difference in arginase activity between the tissues of Eisenia and those of Lumbricus shows a relationship to the difference in urea output by living worms of the two species under the same dietary régime. 2. In Eisenia the difference in activity between the tissues of fasting and feeding worms is much smaller than in Lumbricus. The specific outputs of urea by living, fasting and feeding worms likewise differ less than in Lumbricus. 3. These facts strengthen previous evidence in favour of a Krebs-Henseleit type of mechanism for urea production in earthworms. 4. In Eisenia the difference in arginase activity between gut and body wall is similar to, but smaller than, that in Lumbricus, and the body wall makes a major contribution to the total activity. 5. The combined concentrations of ammonia-, amino-, and urea-nitrogen initially present in homogenates of the tissues of these worms are proportional to the combined amounts of the three components excreted per unit weight by living worms of the same species and régime. 6. The two species differ in a number of other properties investigated.


Sign in / Sign up

Export Citation Format

Share Document