Neuromuscular Junctions in the Body Wall Muscles of the Earthworm, Lumbricus Terrestris Linn

1970 ◽  
Vol 7 (1) ◽  
pp. 263-271
Author(s):  
P. J. MILL ◽  
M. F. KNAPP

The fine structure of the neuromuscular Junctions in the body wall muscles of the earthworm is described. The segmental nerves send branches into the muscle layers. Axons in the nerve branches contain numerous synaptic vesicles and contact is established between these axons and muscle fibres or muscle tails; the latter may extend for a considerable distance from the muscle fibre. The cleft between the axolemma and sarcolemma is 85-120 nm wide and contains basement membrane material. At intervals small aggregations of electron-dense material are attached to the axonal membrane and synaptic vesicles are associated with these. The sarcolemma bears rather larger masses of dense material and is also specialized extracellularly.

1957 ◽  
Vol 3 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Jean Hanson

1. The structure of the smooth muscle fibres in the longitudinal muscle coat of the body wall of Lumbricus terrestris has been investigated by phase contrast light microscopy and electron microscopy. 2. The muscle fibre is ribbon-shaped, and attached to each of its two surfaces is a set of myofibrils. These are also ribbon-shaped, and they lie with their surfaces perpendicular to the surfaces of the fibre, and their inner edges nearly meeting in the middle of the fibre. These fibrils are oriented at an angle to the fibre axis, and diminish greatly in width as they approach the edge of the fibre. The orientation of the set of fibrils belonging to one surface of the fibre is the mirror image of that of the set belonging to the other surface; thus, when both sets are in view in a fibre lying flat on one face, the fibre exhibits double oblique striation. A comparison of extended and contracted fibres indicates that as the fibre contracts, the angle made between fibre and fibril axes increases (e.g. from 5 to 30°) and so does the angle made between the two sets of fibrils (e.g. from 10 to 60°). 3. The myofibril, throughout its length, contains irregularly packed filaments, commonly 250 A in diameter, which are parallel to its long axis and remain straight in contracted muscles. Between them is material which probably consists of much finer filaments. Thus A and I bands are absent. 4. Bound to one face of each fibril, but not penetrating inside it, is a regularly spaced series of transverse stripes. They are of two kinds, alternating along the length of the fibril, and it is suggested that they are comparable to the Z and M lines of a cross-striated fibril. The spacing of these stripes is about 0.5 µ ("Z" to "Z") in extended muscles, and 0.25 µ in contracted muscles. A bridge extends from each stripe across to the stripeless surface of the next fibril.


1971 ◽  
Vol 8 (2) ◽  
pp. 413-425 ◽  
Author(s):  
M. F. KNAPP ◽  
P. J. MILL

Obliquely striated muscle fibres from the longitudinal and circular layers of the body wall of the earthworm were prepared in extended and contracted states for study in the electron microscope. Contracted fibres differ from extended ones in the following respects: (i) the I-bands are narrower, (ii) the A-bands are wider, and (iii) there are more rows of thick myofilaments in each A-band. The arrangement of the thick and thin myofilaments in interdigitating arrays and the occurrence of cross-links between the 2 types of myofilament indicate a classical sliding-filament mechanism of contraction as in cross-striated muscle, resulting in a reduction in the I-band width. The increase in the A-band width could be due to a moving apart of the myofilaments during contraction to preserve constant volume of the lattice. The third change, the increase in the number of rows of thick myofilaments in the A-band, can be explained only by a shearing of these filaments past one another in such a way as to increase the amount of their overlap. The role of the sliding-filament and shearing contraction mechanisms in bringing about the changes observed in earthworm muscle fibres is considered and the possible correlation of these mechanisms with certain physiological data is discussed. The function of the sarcoplasmic reticulum in the transmission of impulses to the interior of the fibre and/or in the control of the contraction mechanism is also discussed.


1969 ◽  
Vol 51 (1) ◽  
pp. 47-58
Author(s):  
M. K. SEYMOUR

1. Crawling movement and burrowing of Lumbricus terrestris (L.) have been studied by continuous recording of internal pressure, direct observation and analysis of cine film. Frequency of locomotory waves is from 5 to 20 per min. Timing of protrusion of setae and of backward slip of points d'appui in locomotion have been observed and recorded. 2. In normal locomotion elongation of segments by contraction of the circular muscles gives rise to a discrete pressure pulse; shortening, by contraction of the longitudinal muscles, may or may not do so, depending on the position of the segment in the worm and the relative extent of contraction of the longitudinal and circular muscles. 3. Consideration of crawling and burrowing pressure records emphasizes the importance of (a) the circular muscles in extension of the head end in crawling and in initial penetration of the soil, and (b) the longitudinal muscles during burrowing, in dilating the burrow and drawing in more posterior segments 4. Mean pressures at circular and longitudinal muscle contraction are 12 and 7 cm. H2O respectively. The highest pressure recorded was 75 cm. H2O and accompanied violent squirming with evident contraction of all the body wall muscles. Resting pressures, shown in the absence of organized movement, are low (mean 0.26 cm. H2O). In both resting and crawling negative pressures sometimes occur and these are considered in relation to the inherent stiffness of the body wall and to the septate condition. 5. Tension in the longitudinal and circular muscle layers of a worm developing 75 cm. H2O internal pressure are calculated to be 265 and 1323 g./cm2. respectively, demonstrating in this example that, relative to the circulars, the longitudinal muscles are understressed by a factor of 5. Mean locomotory L.M. and C.M. peak values yield tension values of only 25 and 212 g./cm. respectively, and these are clearly well within the worm's capacity.


1970 ◽  
Vol 7 (1) ◽  
pp. 233-261
Author(s):  
P. J. MILL ◽  
M. F. KNAPP

The fine structure of obliquely striated muscle fibres from the body wall of the earthworm has been investigated. Certain details of the structure have been confirmed by cutting serial sections. The fibres contain both thick and thin myofilaments. The latter are attached to Z-material and the 2 types of myofilament are arranged in interdigitating arrays to give rise to A- and I-bands and an H-zone similar to those in cross-striated muscle. The A-bands contain both thick and thin myofilaments and the I-bands only thin myofilaments. The Z-material is rod-shaped and these Z-rods, oriented perpendicular to the sarcolemma, are arranged in numerous parallel rows which run obliquely along the length of the fibre A line drawn parallel to the longitudinal fibre axis through a Z-rod in one row passes through a Z-rod in the next row. A thin, sheet-like array of myofilaments lies between 2 such Z-rods, forming a single sarcomere containing an A-band and 2 I-bands. The flat surfaces of neighbouring sarcomeres are directly apposed to one another but, since the rows of Z-rods run diagonally along the length of the fibre, each sarcomere is displaced longitudinally with respect to the next, so that the A- and I-bands follow an oblique course, instead of a transverse course as in cross-striated muscle. Because of the regular stagger of the sarcomeres A- and I-bands are cut alternately in transverse sections. Also the sarcomeres are very narrow and are seen as bands lying perpendicular to the sarcolemma. In the A-band a variable number of thin myofilaments (up to 12) surrounds each thick one. Cross-links have been seen between the 2 types of filaments. In longitudinal sections an appearance similar to that seen in cross-striated muscle is obtained in one plane (perpendicular to the sarcolemma). In the plane at right angles to this (parallel to the sarcolemma) the A- and I-bands are at an acute angle to the longitudinal fibre axis. The thick myofilaments exhibit a banding of about 15 nm. There is a system of transversely oriented tubules and peripheral vesicles with dyad-like structures occurring at the juxtaposition between the penpheral vesicles and the sarcolemma. It is concluded that this system is sarcoplasmic reticulam, and it is compared with tubular systems in other muscles. Other cellular constituents are described, including a peripheral skeleton of fibrillar bundles.


1960 ◽  
Vol s3-101 (54) ◽  
pp. 149-176
Author(s):  
R. B. CLARK ◽  
M. E. CLARK

Nephtys lacks circular body-wall muscles. The chief antagonists of the longitudinal muscles are the dorso-ventral muscles of the intersegmental body-wall. The worm is restrained from widening when either set of muscles contracts by the combined influence of the ligaments, some of the extrinsic parapodial muscles, and possibly, to a limited extent, by the septal muscles. Although the septa are incomplete, they can and do form a barrier to the transmission of coelomic fluid from one segment to the next under certain conditions, particularly during eversion of the proboscis. Swimming is by undulatory movements of the body but the distal part of the parapodia execute a power-stroke produced chiefly by the contraction of the acicular muscles. It is suspected that the extrinsic parapodial muscles, all of which are inserted in the proximal half of the parapodium, serve to anchor the parapodial wall at the insertion of the acicular muscles and help to provide a rigid point of insertion for them. Burrowing is a cyclical process involving the violent eversion of the proboscis which makes a cavity in the sand. The worm is prevented from slipping backwards by the grip the widest segments have on the sides of the burrow. The proboscis is retracted and the worm crawls forward into the cavity it has made. The cycle is then repeated. Nephtys possesses a unique system of elastic ligaments of unusual structure. The anatomy of the system is described. The function of the ligaments appears to be to restrain the body-wall and parapodia from unnecessary and disadvantageous dilatations during changes of body-shape, and to serve as shock-absorbers against the high, transient, fluid pressures in the coelom, which are thought to accompany the impact of the proboscis against the sand when the worm is burrowing. From what is known of its habits, Nephtys is likely to undertake more burrowing than most other polychaetes.


1979 ◽  
Vol 82 (1) ◽  
pp. 273-280
Author(s):  
B. S. WONG ◽  
DONALD M. MILLER ◽  
T. T. DUNAGAN

Body wall muscles of an acanthocephalan Macracanthorhynchus hirudinaceus were studied by means of scanning and light microscopy and intracellular recording of potentials. Three types of spontaneous potential changes were found: larger (L) potentials which usually exhibited overshoot and were as large as 65 mV; smaller symmetric (A) potentials approximately 15 mV in amplitude; and even smaller asymmetric (S) potentials which sometimes reached 10 mV. The potentials recorded depended upon the position of the electrode in the anterior-posterior, as well as the medialateral, axis. Tetrodotoxin eliminated L but not S potentials. Ouabain lengthened the time for depolarization of L potentials and depolarized the membrane potentials. It is suggested that the rete system activates the body wall muscles in Acanthocephala.


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 667-681 ◽  
Author(s):  
P.Y. Goh ◽  
T. Bogaert

As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.


1925 ◽  
Vol s2-69 (274) ◽  
pp. 245-290
Author(s):  
A. J. GROVE

During the sexual congress of L.terrestris, the co-operating worms become attached to one another in a head-to-tail position in such a way that segments 9-11 of one are opposed to the clitellum of the other, and vice versa. At these points the attachment between the worms is an intimate one, assisted by the secretion of the glands associated with the diverticula of the setal pores found in certain segments, and is reinforced by the mutual penetration of the setae into the opposed body-surfaces. There is also a slighter attachment between segment 26 of one and 15 of the other. Each worm is enclosed in a slime-tube composed of mucus secreted from the epidermis. The exchange of seminal fluid is a mutual one. The fluid issues from the apertures of the vasa deferentia in segment 15, and is conducted beneath the slime-tube in pit-like depressions in the seminal grooves, which extend from segment 15 to the clitellum on each side of the body, to the clitellum, where it accumulates in the space between the lateral surfaces of segments 9-11 of one worm and the clitellum of the other. Eventually it becomes aggregated into masses in the groove between segments 9 and 10, and 10 and 11, and passes thence into the spermathecae. The seminal groove and its pit-like depressions are brought into existence by special muscles lying in the lateral blocks of longitudinal muscles of the body-wall.


Sign in / Sign up

Export Citation Format

Share Document