pore canals
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Kenji Murata ◽  
Masato Kinoshita

AbstractEgg envelopes (chorions) in medaka, Oryzias latipes, are composed of three major glycoproteins: ZI-1, − 2, and − 3. These gene-encoded chorion glycoproteins are expressed in the liver and/or ovarian oocytes of sexually mature female fish. In medaka, the glycoproteins produced in the female liver are induced by estrogen as Choriogenin (Chg.) H and Chg. H minor (m), which correspond to the zona pellucida (ZP) B (ZPB) protein in mammals, and Chg. L, which corresponds to ZPC in mammals. Chg. H, Chg. Hm, and Chg. L, are then converted to ZI-1, − 2, and − 3, respectively, during oogenesis in medaka ovaries.In the present study, we established a medaka line in which the chg.l gene was inactivated using the transcription activator-like effector nuclease (TALEN) technique. Neither intact chg.l transcripts nor Chg. L proteins were detected in livers of sexually mature female homozygotes for the mutation (homozygous chg.l knockout: chg.l−/−). The chg.l−/− females spawned string-like materials containing “smashed eggs.” Closer examination revealed the oocytes in the ovaries of chg.l−/− females had thin chorions, particularly at the inner layer, despite a normal growth rate. In comparing chorions from normal (chg.l+/+) and chg.l−/− oocytes, the latter exhibited abnormal architecture in the chorion pore canals through which the oocyte microvilli pass. These microvilli mediate the nutritional exchange between the oocyte and surrounding spaces and promote sperm-egg interactions during fertilization. Thus, following in vitro fertilization, no embryos developed in the artificially inseminated oocytes isolated from chg.l−/− ovaries. These results demonstrated that medaka ZI-3 (Chg.L) is the major component of the inner layer of the chorion, as it supports and maintains the oocyte’s structural shape, enabling it to withstand the pressures exerted against the chorion during spawning, and is essential for successful fertilization. Therefore, gene products of oocyte-specific ZP genes that may be expressed in medaka oocytes cannot compensate for the loss Chg. L function to produce offspring for this species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara E. Oser ◽  
Karen Chin ◽  
Joseph J. W. Sertich ◽  
David J. Varricchio ◽  
Seung Choi ◽  
...  

AbstractA new Cretaceous ootaxon (eggshell type) from the Kaiparowits Formation of Grand Staircase-Escalante National Monument is among a growing number of very small eggs described from the Mesozoic. Analyses of two partial eggs (~ 17.7 mm in diameter) and 29 eggshell fragments reveal that this new ootaxon exhibits nodose ornamentation with distinctive branching pore canals that open atop the nodes. Its two-layered microstructure consists of a mammillary layer and a continuous layer with rugged grain boundaries between calcite grains. Although the exact identity of the egg producer is unknown, the eggshell microstructure and small size is consistent with a small-bodied avian or non-avian theropod. The specific combination of small egg size, branching pores, two-layered microstructure, and dispersituberculate ornamentation preserved in this new ootaxon is unique among theropod eggs. This underscores that both eggshell and skeletal fossils of Cretaceous theropods can display a mosaic of transitional morphological and behavioural features characteristic of both avian and non-avian taxa. As such, this new ootaxon increases the diversity of Cretaceous eggs and informs our understanding of the evolution of theropod eggshell microstructure and morphology.


2020 ◽  
Vol 26 (29) ◽  
pp. 3530-3545 ◽  
Author(s):  
Subbaratnam Muthukrishnan ◽  
Seulgi Mun ◽  
Mi Y. Noh ◽  
Erika R. Geisbrecht ◽  
Yasuyuki Arakane

: Chitin contributes to the rigidity of the insect cuticle and serves as an attachment matrix for other cuticular proteins. Deficiency of chitin results in abnormal embryos, cuticular structural defects and growth arrest. When chitin is not turned over during molting, the developing insect is trapped inside the old cuticle. Partial deacetylation of cuticular chitin is also required for proper laminar organization of the cuticle and vertical pore canals, molting, and locomotion. Thus, chitin and its modifications strongly influence the structure of the exoskeleton as well as the physiological functions of the insect. : Internal tendons and specialized epithelial cells called “tendon cells” that arise from the outer layer of epidermal cells provide attachment sites at both ends of adult limb muscles. Membrane processes emanating from both tendon and muscle cells interdigitate extensively to strengthen the attachment of muscles to the extracellular matrix (ECM). Protein ligands that bind to membrane-bound integrin complexes further enhance the adhesion between muscles and tendons. Tendon cells contain F-actin fiber arrays that contribute to their rigidity. In the cytoplasm of muscle cells, proteins such as talin and other proteins provide attachment sites for cytoskeletal actin, thereby increasing integrin binding and activation to mechanically couple the ECM with actin in muscle cells. Mutations in integrins and their ligands, as well as depletion of chitin deacetylases, result in defective locomotion and muscle detachment from the ECM. Thus, chitin in the cuticle and chitin deacetylases strongly influence the shape and functions of the exoskeleton as well as locomotion of insects.


2020 ◽  
pp. 550-550 ◽  
Author(s):  
Masaki Tamori ◽  
Chikako Shingyoji ◽  
Keiichi Takahashi
Keyword(s):  

2020 ◽  
Vol 94 (3) ◽  
pp. 498-512
Author(s):  
Juan José Rustán ◽  
Beatriz G. Waisfeld ◽  
N. Emilio Vaccari

AbstractThe homalonotid trilobite Burmeisteria Salter, 1865 is revised from material from the Lower Devonian of central western Argentina (the Talacasto Formation in the Precordillera Basin). In contrast to other closely related Devonian marine basins from South America (mainly Bolivia, Brazil and Uruguay), the only species recognized in Argentina include Burmeisteria herschelii (Murchison, 1839) and B. notica (Clarke, 1913). New observations on the structure of the carapace indicate that structures sometimes interpreted as granules with taxonomic meaning are, in fact, taphonomic characters that represent the fillings of pore canals exposed by decortication. The antero-ventral process of the rostral plate may be a locking device during enrollment, which allowed long-term defensive behavior with a minimum of muscular energy. Burmeisteria is an upper Silurian to Middle Devonian endemic representative of southwestern Gondwanan (Malvinokaffric) basins. In the Argentine Precordillera Basin, this genus is virtually restricted to a sandy, Pragian, stratigraphic interval capped by a marker bed first reported by Keidel in 1921.


2019 ◽  
Author(s):  
Y Wang ◽  
M Norum ◽  
K Oehl ◽  
Y Yang ◽  
R Zuber ◽  
...  

AbstractPrevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Torr - a human ABCA12 paralog - contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Torr function provokes rapid desiccation. Torr is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Torr activity is reduced. GFP-tagged Torr localises to membrane nano-protrusions within the cuticle, likely pore canals. This suggests that Torr is mediating the transport of cuticular hydrocarbons (CHC) through the pore canals to the cuticle surface. The envelope, which is the outermost cuticle layer constituting the main barrier, is unaffected in torr mutant larvae. This contrasts with the function of Snu, another ABC transporter needed for the construction of the cuticular inward and outward barriers, that nevertheless is implicated in CHC deposition. Hence, Torr and Snu have overlapping and independent roles to establish cuticular resistance against transpiration and xenobiotic penetration. The torr deficient phenotype parallels the phenotype of Harlequin ichthyosis caused by mutations in the human abca12 gene. Thus, it seems that the cellular and molecular mechanisms of lipid barrier assembly in the skin are conserved in vertebrates in invertebrates.Author SummaryAs in humans, lipids on the surface of the skin of insects protect the organism against excessive water loss and penetration of potentially harmful substances. During evolution, a greasy surface was indeed an essential trait for adaptation to life outside a watery environment. Here, we show that the membrane-gate transporter Torr is needed for the deposition of barrier lipids on the skin surface in the fruit fly Drosophila melanogaster through extracellular nano-tubes, called pore canals. In principle, the involvement of Torr parallels the scenario in humans, where the membrane-gate transporter ABCA12 is implicated in the construction of the lipid-based stratum corneum of the skin. In both cases, mutations in the genes coding for the respective transporter cause rapid water-loss and are lethal soon after birth. We conclude that the interaction between the organism and the environment obviously implies an analogous mechanism of barrier formation and function in vertebrates and invertebrates.


2019 ◽  
Vol 28 (2) ◽  
pp. 250-261
Author(s):  
N. І. Dykan

This article presents a detailed analysis of the taxonomic composition of the Pliocene (Kimmerian, Kujalnikian) and Eopleistocene (Gurian) ostracods in the northern part of the Black Sea. It presents the patterns of the stratigraphic position of the fossil ostracods in the Miocene - Quaternary and their geographic distribution in Western and Eastern Europe (the Pannonian Basin, the Dacian Basin, the Euxinian basin of the Paratethys) and the Mediterranean region.Wedetermined the characteristic species for the Kimmerian, Kujalnikian and Gurian in the northern part of the Black Sea. We established a change in the taxonomic composition of ostracods at the Pliocene (Kujalnikian)/Eopleistocene (Gurian) boundary, namely the disappearance of a large number of Pliocene species and the appearance of new species. Ten species disappeared in the Kujalnikian Cyprideis pontica, Euxinocythere (M.) crebra, Amnicythere mironovi, Camptocypria lobata, Loxoconcha subcrassula, Loxoconcha verticalitercostata, Xestoleberis (X.) cellulocus, Xestoleberis (P.) communis, Candona (C.) expressa, Ilyocypris caspiensis; one species Amnicythere postbissinuata appeared in the Gurian. The brackish water species Cyprideis pontica is the Kujalnikian index species. The stratigraphic position of Cyprideis pontica in the Mediterranean Basin, Pannonian Basin, Dacian Basin, Euxinian Basin (Black Sea) in the Miocene-Quaternary is analyzed. The time of the disappearance of Cyprideis pontica in the Mediterranean, Pannonian and Dacian basins (Messinian, Pontian/Zanclean, Dacian, Kimmerian boundary) and in the Black Sea (Kujalnikian/Gurian boundary) is established. The diagnostic morphological features of the shell Cyprideis pontica (morphology of the surface pore canals) are established and described, which allows us to place this species in the Neogene deposits. Surface pore canals are different shape, sievetyped, deepened in relation to the surface of the valve. Sieve-shaped lamella contains 110-270 internal pores. The internal pores have a staggered shape, the diameter of the osculum of the internal pore is 302-994 nm; diameter of the central pore is 977 nm-1.8 μm). The evolution of Cyprideis pontica, which was separated from the parent species Cyprideis torosa in the Late Miocene, was reconstructed. In the occupation of a new ecological niche with a reduced oxygen content in deeper water biotopes, in the process of adapting to the conditions of hypoxia and necessity of increasing the volume of water filtration, there was a restructuring of the morphology of the surface pore canals of the shell Cyprideis torosa. This involved an increase in the size of the sieve-shaped lamella, the number of internal pores in the sieve-shaped lamella and the size of the osculum of the inner pore. A new morphotype Cyprideis pontica was thus formed within the existing Parathetys-Mediterranean basins. It had a mosaic, ecologically isolated range that coincided geographically or overlapped with the range of the species Cyprideis torosa (sympatric evolutionary speciation). The range of Cyprideis pontica and the dynamics of its populations in the Euxinian Basin during the Sarmatian-Kujalnikian have been reconstructed.


Author(s):  
A. R. Parker ◽  
B. P. Palka ◽  
C. Purslow ◽  
S. Holden ◽  
P. N. Lewis ◽  
...  

Many myodocopid ostracods are unusual in that they have well-developed compound eyes yet must view their environment through a shell. The cypridinid Macrocypridina castanea is relatively large among ostracods (about 5–10 mm) and is a pelagic predator. This species possess highly pigmented shells with a transparent region lying just above the eye. Here we examine the ultrastructure and transparency of this window using electron microscopy, serial-block face scanning electron microscopy and X-ray diffraction analysis and optical modelling. An internal, laminar stack was identified within the window region of the shell that formed a more regular half-wave reflector than in non-window regions, and where the distance between molecules in the chitin–protein fibrils decreases as compared to the non-window area. This results in excellent transmission properties—at around 99% transmission—for wavelengths between 350 and 630 nm due to its half-wave reflector organization. Therefore, blue light, common in the mid and deep sea, where this species inhabits, would be near-optimally transmitted as a consequence of the sub-micrometre structuring of the shell, thus optimizing the ostracod's vision. Further, pore canals were identified in the shell that may secrete substances to prevent microbial growth, and subsequently maintain transparency, on the shell surface. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology’.


Sign in / Sign up

Export Citation Format

Share Document