Evidence for septate junctions in the syzygy of the protozoon Gregarina polymorpha (Protozoa, Apicomplexa)

1988 ◽  
Vol 89 (2) ◽  
pp. 217-224
Author(s):  
ROMANO DALLAI ◽  
MARIA VEGNI TALLURI

A septate junction is described in reproductive pairs of the protozoon Gregarina polymorpha, using conventional thin sections, lanthanum tracer and freeze-fracture techniques. The septate junction is established between the plasma membranes at the tips of the joined epicytic folds. It is characterized by an intercellular space of 14–17 nm traversed by septa with a repeat of 15–25 nm. Lanthanum-treated material exhibits transparent curves forming a meshwork. Freeze-fracture replicas show membrane modifications in the shape of short rows of intramembranous particles on the E fracture face of the plasma membrane. The significance of the finding of such a septate junction between protozoan cells is discussed.

1978 ◽  
Vol 76 (1) ◽  
pp. 57-75 ◽  
Author(s):  
C J Connell

What appear to be true septate junctions by all techniques currently available for the cytological identification of intercellular junctions are part of a complex junction that interconnects the Sertoli cells of the canine testis. In the seminiferous epithelium, septate junctions are located basal to belts of tight junctions. In thin sections, septate junctions appear as double, parallel, transverse connections or septa spanning an approximately 90-A intercellular space between adjacent Sertoli cells. In en face sections of lanthanum-aldehyde-perfused specimens, the septa themselves exclude lanthanum and appear as electron-lucent lines arranged in a series of double, parallel rows on a background of electron-dense lanthanum. In freeze-fracture replicas this vertebrate septate junction appears as double, parallel rows of individual or fused particles which conform to the distribution of the intercellular septa. Septate junctions can be clearly distinguished from tight junctions as tight junctions prevent the movement of lanthanum tracer toward the lumen, appear as single rows of individual or fused particles in interlacing patterns within freeze-fracture replicas, and are seen as areas of close membrane apposition in thin sections. Both the septate junction and the tight junction are associated with specializations of the Sertoli cell cytoplasm. This is the first demonstration in a vertebrate tissue of a true septate junction.


1982 ◽  
Vol 56 (1) ◽  
pp. 245-262 ◽  
Author(s):  
N.J. Lane ◽  
L.S. Swales

The stages that occur during the assembly of both pleated and smooth septate junctions in developing insect tissues have been examined. The oesophagus and mid-gut of the embryonic moth, and the oesophagus and central nervous system (CNS) of the locust embryo, have been investigated in thin sections and by freeze-fracture during the course of membrane biogenesis. The smooth septate junctions developing between the lateral borders of the mid-gut exhibit, in the early stages, individual intramembranous particles becoming aligned into short ridges. These ultimately migrate over the membrane face and fuse into longer arrays, which become stacked in parallel with other ridges to form the characteristic mature form of the junction just before hatching. Pleated septate junctions occur between the cells both of the oesophagus and of the perineurium, which ensheathes the neurones and the neuroglial cells in the locust CNS; these are also fully formed by the end of embryonic development. The pleated junctions appear to be assembled during the later stages of CNS or gut differentiation, arising first in embryos about two-thirds of the way through development. During their maturation, the initial event seems to be a membrane depression in the P face, which occurs in patches over the presumptive junctional membrane. Into these depressed regions or ‘formation-plaque’ areas, 8–10 nm particles appear to be inserted intramembranously in apparently random arrays. These particles are the most common elements but larger particles are also present; the former ultimately become aligned in a row. With time, other intramembranous particles come to lie in rows parallel to the original one. By hatching, the typical undulating stacks of parallel intramembranous particle rows are fully formed. Gap junctions also form between the same perineurial or oesophageal cells, usually before, but in some cases at the same time, or just after, the septate junctions have been assembled. Tricellular associations between cells also appear around the same time in embryonic development. The simultaneous assembly of these different junctions reflects a high degree of organizational capacity at the membrane level.


1982 ◽  
Vol 94 (1) ◽  
pp. 77-87 ◽  
Author(s):  
D K Fristrom

The organization of septate junctions during morphogenesis of imaginal disks is described from freeze-fracture replicas and thin sections with a view to understanding junction modulation during rearrangements of cells in epithelia. The septate junctions of each epithelial cell of the disk are distributed in a number of discrete domains equal to the number of neighboring cells. Individual septa traverse domains of contact between pairs of adjacent cells, turn downwards at the lateral boundary of the domain and run parallel to the intersection with a third cell. This arrangement leaves small channels at three-cell intersections that are occupied by specialized structures termed "tricellular plugs." Cell rearrangement involves a progressive change in the width of contact domains between adjacent cells, until old contacts are broken and new ones established. It is proposed that the septate junction adjusts to the changing width of domains by the compaction or extension of existing septa. This redistribution of septa theoretically allows a transepithelial barrier to be maintained during cell rearrangements. The applicability of this model to other epithelial tissues is discussed.


1993 ◽  
Vol 41 (5) ◽  
pp. 649-656 ◽  
Author(s):  
F W Kan

Previous freeze-fracture experiments using either glutaraldehyde-fixed and cryoprotected specimens or unfixed rapid-frozen samples led to the proposal that cylindrical strands of the tight junction (TJ) observed in freeze-fracture preparations are inverted cylindrical micelles made up of membrane lipids and, possibly, membrane proteins. However, no one has yet been able to directly label the structural fibrils of the TJ. To test the hypothesis that TJ strands observed on freeze-fracture preparations are composed at least partially of lipids, we have combined the phospholipase A2-gold and the fracture-label techniques for localization of phospholipids. Phospholipase A2, purified from bee venom, was adsorbed on gold particles and used for specific labeling of its substrate. Phospholipase A2-colloidal gold (PLA2-CG) complex was applied to freeze-fractured preparations of rat exocrine pancreatic cells and testicular Sertoli cells, both of which are known to have extensive TJ complexes on their plasma membranes. Fracture-label replicas of exocrine pancreatic cells revealed specific association of gold particles with TJ fibrils on the protoplasmic fracture-face of the plasma membrane. The majority of these gold particles were observed either directly on the top of the TJ fibrils or adjacent to these cylindrical structures. A high density of PLA2-CG labeling was also observed over the complementary exoplasmic fracture-face of the TJ complex. This intimate association of PLA2-CG labeling with the TJ is particularly evident in the Sertoli cell plasma membrane, where rows of gold particles were observed to be superimposed on parallel arrays of cylindrical strands of the TJ complex. The present findings provide direct cytochemical evidence to support the hypothesis that cylindrical TJ strands observed in freeze-fracture preparations contain phospholipids.


1984 ◽  
Vol 99 (2) ◽  
pp. 390-402 ◽  
Author(s):  
D Zucker-Franklin ◽  
S Petursson

The origin of platelets (Pt) from megakaryocytes (MK) is beyond question, but the mechanism whereby Pts are released from the precursor cell is still debated. A widely-held theory claims that the MK plasma membrane invaginates to form demarcation membranes (DMS), which delineate Pt territories. Accordingly, Pts would be derived mostly from the periphery of the MK, and the MK and Pt plasma membranes would have to be virtually identical. Since, on morphologic grounds, this theory is untenable, several aspects of thrombocytopoiesis were reexamined with the help of membrane tracer and freeze-fracture analyses of freshly-collected human and cultured mouse MK. To our surprise, freeze-cleavage of the MK plasma membrane revealed that the vast majority of intramembranous particles (IMP) remained associated with the protoplasmic leaflet (P face), whereas the partition coefficient of IMPs of the platelet membrane was the reverse. This is the first time that any difference between MK and Pt membranes has been determined. Replicas of freeze-fractured MK that were in the process of thrombocytopoiesis revealed an additional novel phenomenon, i.e., numerous areas of membrane discontinuity that appeared to be related to Pt discharge. When such areas were small, the IMP were lined up along the margin of the crevice. At a later phase, a labyrinth of fenestrations was observed. Thin sections of MK at various stages of differentiation showed that Pt territories were fully demarcated before connections of the DMS with the surface could be found. Therefore, the Pt envelope is probably not derived from invaginations of the MK plasma membrane. When living, MK were incubated with cationic ferritin or peroxidase at 37 degrees C, the tracers entered into the DMS but did not delineate all membranes with which the DMS was in continuity, suggesting the existence of distinctive membrane domains. Interiorization of tracer was not energy-dependent, but arrested at low temperatures. At 4 degrees C the DMS remained empty, unless there was evidence that Pts had been released. In such instances, the tracers outlined infoldings of peripheral cytoplasm that was devoid of organelles. Thus, the majority of Pts seem to originate from the interior of the MK, and the surface membranes of the two cells differ in origin and structure. The observations do not only throw new light on the process of thrombocytopoiesis, but also strengthen the possibility that MKs and Pts may be subject to different stimuli.


1986 ◽  
Vol 80 (1) ◽  
pp. 13-28
Author(s):  
B. Kachar ◽  
N.A. Christakis ◽  
T.S. Reese ◽  
N.J. Lane

Smooth septate junctions from the midgut of the cricket, Acheta, and the horseshoe crab, Limulus, as well as Hydra-type septate junctions from the epidermis of Hydra have been studied by freeze-fracture after direct freezing using the liquid helium-cooled copper block/slam freezing method. The exoplasmic fracture face at both types of septate junction exhibits rows of closely packed but irregularly shaped intramembrane particles. Complementary to these particle rows, on the protoplasmic fracture face, are sharply defined grooves with a periodic variation in depth and width that was conspicuous in Hydra but less well defined in arthropods. The closely packed, irregular particles on the exoplasmic faces could represent plastically deformed portions of transmembrane proteins pulled through the bilayer during freeze-fracture. On the basis of this interpretation, the grooves on the protoplasmic faces represent a confluence of the bilayer disruptions occurring during fracturing. The structures observed here are different from those reported in replicas of glutaraldehyde-fixed and glycerol-cryoprotected tissue, in which the intramembrane junctional components partition with the protoplasmic face and often assume the appearance of continuous cylinders. This comparison illustrates some of the artifacts associated with freeze-fracturing and shadowing. On the basis of a comparison of freeze-fracture replicas and sections of lanthanum-infiltrated tissues, the relationship between intramembrane junctional components and intercellular septal elements is analysed.


1983 ◽  
Vol 62 (1) ◽  
pp. 27-48
Author(s):  
E. Spiegel ◽  
L. Howard

The development of cell junctions in sea-urchin embryos has been investigated using thin sections, lanthanum-tracer and freeze-fracture techniques. Three types of desmosomes are present: belt desmosomes and spot desmosomes, which attach cells to each other, and hemi-desmosomes, which attach cells to the basement membrane. Two types of septate junctions are present: the straight, unbranched, double-septum septate, which is present in epithelial cells throughout embryogenesis, and the pleated, anastomosing, single-septum septate. The latter is formed only on cells that have invaginated to the interior of the embryo to form the digestive tract. The pleated junctions are shown to replace the straight junctions that were originally present before the cells migrated to the interior. It is suggested that these pleated septates may be specialized for digestive processes, since they are developed just prior to feeding and are retained in the adult intestine. Tricellular junctions, which join the bicellular junctions of three adjoining cells, have been identified in the embryo and in the adult intestine. Evidence for the presence of gap junctions was not obtained, but there are indications of their presence.


1983 ◽  
Vol 59 (1) ◽  
pp. 159-182
Author(s):  
J. Kukulies ◽  
H. Komnick

The cell membranes and cell junctions of the rectal chloride epithelia of the larval dragonfly Aeshna cyanea were examined in thin sections and by freeze-fracture. These epithelia function in active ion absorption and maintain a high concentration gradient between the haemolymph and the fresh-water environment. Freeze-fracturing reveals fine-structural differences in the intramembraneous particles of the luminal and contraluminal plasma membranes of these epithelia, reflecting the functional diversity of the two membranes, which are separated by the junctional complex. The particle frequency of the basolateral plasma membranes is reduced after transfer of the larvae into high concentrations of environmental salinity. The junctional complex is located in the apical region and composed of three types of cell junctions: the zonula adhaerens, seen in freeze-fracture as a nearly particle-free zone; the extended and highly convoluted pleated septate junction and randomly interspersed gap junctions of the inverted type. Gap junctions also occur between the basolateral plasma membranes. They provide short-cuts in the diffusion pathway for direct and rapid co-ordination of the interconnected cell processes. Colloidal and ionic lanthanum tracer solutions applied in vivo from the luminal side penetrate through the cuticle via epicuticular depressions, but invade only the apical portion of the junctional complex. This indicates that the pleated septate junction constitutes a structural control of the paracellular pathway across the chloride epithelia, which are devoid of tight junctions. The structure of the pleated septate junctions is interpreted as a device for the extension of the diffusion distance, which is inversely related to the net diffusion. A conservative estimate of the total length of the junction, and the number and extension of septa reveals that the paracellular route exceeds the transcellular route by a factor of 50.


1977 ◽  
Vol 72 (1) ◽  
pp. 144-160 ◽  
Author(s):  
R L Weiss ◽  
D A Goodenough ◽  
U W Goodenough

Fusion of plasma membranes between Chlamydomonas reinhardtii gametes has been studied by freeze-fracture electron microscopy of unfixed cells. The putative site of cell fusion developes during gametic differentiation and is recognized in thin sections of unmated gametes as a plaque of dense material subjacent to a sector of the anterior plasma membrane (Goodenough, U.W., and R.L. Weiss. 1975.J. Cell Biol. 67:623-637). The overlying membrane proves to be readily recognized in replicas of unmated gametes as a circular region roughly 500 nm in diameter which is relatively free of "regular" plasma membrane particles on both the P and E fracture faces. The morphology of this region is different for mating-type plus (mt+) and mt- gametes: the few particles present in the center of the mt+ region are distributed asymmetrically and restricted to the P face, while the few particles present in the center of the mt- region are distributed symmetrically in the E face. Each gamete type can be activated for cell fusion by presenting to it isolated flagella of opposite mt. The activated mt+ gamete generates large expanses of particle-cleared membrane as it forms a long fertilization tubule from the mating structure region. In the activated mt- gamete, the E face of the mating structure region is transformed into a central dome of densely clustered particles surrounded by a particle-cleared zone. When mt+ and mt- gametes are mixed together, flagellar agglutination triggeeeds to fuse with an activated mt- region. The fusion lip is seen to develop within the particle-dense central dome. We conclude that these mt- particles play an active role in membrane fusion.


Author(s):  
Colin R. Green

Three main variations of the invertebrate septate junction are now generally accepted; the Hydra type, the pleated septate and the smooth septate junctions. A junctional study of many members of a wide range of invertebrate phyla using thin section, lanthanum tracer and freeze-fracture techniques has however revealed at least eight distinct septate junction types, including two anastomosing septate junctions in the higher invertebrate phyla.In the Coelenterata three forms of septate junction occur. The Hydra type found in Hydrozoa (Fig 1), a pegged junction seen in the epidermal cells of Anthozoa and a ladder-like junction seen in the endodermal cells of Anthozoa. The pegged Anthozoa junction consists of septa with distinct short pegs branching at right angles mainly from one side (fig 2). Where two septa run close together, the pegs may form crossbars linking them. The ladder junction has a pegged double septum with crossbars linking the two parts of each septum (fig 3).


Sign in / Sign up

Export Citation Format

Share Document