insect embryos
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Natalie E. van Dis ◽  
Maurijn van der Zee ◽  
Roelof A. Hut ◽  
Bregje Wertheim ◽  
Marcel E. Visser

Climate change is rapidly altering the environment and many species will need to genetically adapt their seasonal timing to keep up with these changes. Insect development rate is largely influenced by temperature, but we know little about the mechanisms underlying temperature sensitivity of development. Here we investigate seasonal timing of egg hatching in the winter moth, one of the few species which has been found to genetically adapt to climate change, likely through selection on temperature sensitivity of egg development rate. To study when during development winter moth embryos are most sensitive to changes in ambient temperature, we gave eggs an increase or decrease in temperature at different moments during their development. We measured their developmental progression and timing of egg hatching, and used fluorescence microscopy to construct a timeline of embryonic development for the winter moth. We found that egg development rate responded more strongly to temperature once embryos were in the fully extended germband stage. This is the phylotypic stage at which all insect embryos have developed a rudimentary nervous system. Furthermore, at this stage timing of ecdysone signaling determines developmental progression, which could act as an environment dependent gateway. Intriguingly, this may suggest that, from the phylotypic stage onward, insect embryos can start to integrate internal and environmental stimuli to actively regulate important developmental processes. As we found evidence that there is genetic variation for temperature sensitivity of egg development rate in our study population, such regulation could be a target of selection imposed by climate change.



2021 ◽  
Author(s):  
Natalie E. van Dis ◽  
Maurijn van der Zee ◽  
Roelof A. Hut ◽  
Bregje Wertheim ◽  
Marcel E. Visser

Climate change is rapidly altering the environment and many species will need to genetically adapt their seasonal timing to keep up with these changes. Insect development rate is largely influenced by temperature, but we know little about the mechanisms underlying temperature sensitivity of development. Here we investigate seasonal timing of egg hatching in the winter moth, one of the few species which has been found to genetically adapt to climate change, likely through selection on temperature sensitivity of egg development rate. To study when during development winter moth embryos are most sensitive to changes in ambient temperature, we gave eggs an increase or decrease in temperature at different moments during their development. We measured their developmental progression and timing of egg hatching, and used fluorescence microscopy to construct a timeline of embryonic development for the winter moth. We found that egg development rate responded more strongly to temperature once embryos were in the fully extended germband stage. This is the phylotypic stage at which all insect embryos have developed a rudimentary nervous system. Furthermore, at this stage timing of ecdysone signaling determines developmental progression, which could act as an environment dependent gateway. Intriguingly, this may suggest that, from the phylotypic stage onward, insect embryos can start to integrate internal and environmental stimuli to actively regulate important developmental processes. As we found evidence that there is genetic variation for temperature sensitivity of egg development rate in our study population, such regulation could be a target of selection imposed by climate change.





2019 ◽  
Author(s):  
Barbora Konopová ◽  
Elisa Buchberger ◽  
Alastair Crisp

ABSTRACTPleuropodia are limb-derived vesicular organs that transiently appear on the first abdominal segment of embryos from the majority of insect “orders”. They are missing in the model Drosophila and little is known about them. Experiments carried out on orthopteran insects eighty years ago indicated that the pleuropodia secrete a “hatching enzyme” that at the end of embryogenesis digests the serosal cuticle to enable the larva to hatch. This hypothesis contradicts the view that insect cuticle is digested by enzymes produced by the tissue that deposited it. We studied the development of the pleuropodia in embryos of the locust Schistocerca gregaria (Orthoptera) using transmission electron microscopy. RNA-seq was applied to generate a comprehensive embryonic reference transcriptome that was used to study genome-wide gene expression of ten stages of pleuropodia development. We show that the mature and secretion releasing pleuropodia are primarily enriched in transcripts associated with transport functions. They express genes encoding enzymes capable of digesting cuticular protein and chitin. These include the potent cuticulo-lytic Chitinase 5, whose transcript rises just before hatching. The pleuropodia are also enriched in transcripts for immunity-related enzymes, including the Toll signaling pathway, melanization cascade and lysozymes. These data provide transcriptomic evidence that the pleuropodia of orthopterans produce the “hatching enzyme”, whose important component is the Chitinase 5. They also indicate that the organs facilitate epithelial immunity and may function in embryonic immune defense. Based on their gene expression the pleuropodia appear to be an essential part of insect physiology.



2016 ◽  
Vol 31 (1) ◽  
pp. 227-234 ◽  
Author(s):  
James L. Maino ◽  
Elia I. Pirtle ◽  
Michael R. Kearney


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Lena Sachs ◽  
Yen-Ta Chen ◽  
Axel Drechsler ◽  
Jeremy A Lynch ◽  
Kristen A Panfilio ◽  
...  

Toll-dependent patterning of the dorsoventral axis in Drosophila represents one of the best understood gene regulatory networks. However, its evolutionary origin has remained elusive. Outside the insects Toll is not known for a patterning function, but rather for a role in pathogen defense. Here, we show that in the milkweed bug Oncopeltus fasciatus, whose lineage split from Drosophila's more than 350 million years ago, Toll is only required to polarize a dynamic BMP signaling network. A theoretical model reveals that this network has self-regulatory properties and that shallow Toll signaling gradients are sufficient to initiate axis formation. Such gradients can account for the experimentally observed twinning of insect embryos upon egg fragmentation and might have evolved from a state of uniform Toll activity associated with protecting insect eggs against pathogens.



2012 ◽  
Vol 197 (7) ◽  
pp. 887-895 ◽  
Author(s):  
Ivo A. Telley ◽  
Imre Gáspár ◽  
Anne Ephrussi ◽  
Thomas Surrey

In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos.



2012 ◽  
Vol 197 (7) ◽  
pp. 853-853
Author(s):  
Mitch Leslie
Keyword(s):  

Researchers discover how nuclei in insect embryos travel to the cortex.



Sign in / Sign up

Export Citation Format

Share Document