Extracts from eggs and oocytes of Xenopus laevis differ in their capacities for nuclear assembly and DNA replication

1990 ◽  
Vol 97 (1) ◽  
pp. 177-184
Author(s):  
L.S. Cox ◽  
G.H. Leno

We describe a cell-free extract derived from the oocytes of Xenopus laevis. The oocyte extract is capable of decondensing sperm chromatin and of replicating single-stranded DNA in a semiconservative, aphidicolin-sensitive manner. In addition, oocyte extract supports the elongation phase of DNA synthesis in nuclei that have been preinitiated for replication. All of these properties are shared by previously described egg extracts. However, oocyte extracts differ from egg extracts in two important ways. First, they cannot support nuclear assembly, as visualised by phase-contrast, fluorescence and electron microscopy. Second, they do not initiate replication on chromatin or nuclei de novo. Crude low-speed supernatants can be partially fractionated into soluble and vesicular components by high-speed centrifugation. Such fractions from eggs can be functionally reconstituted, but the oocyte soluble fraction does not acquire the ability to assemble nuclei, or replicate them, even when supplemented with the egg vesicular fraction. Similarly, oocyte vesicles cannot substitute for egg vesicles on reconstitution with the egg soluble fraction. When the requirement for nuclear assembly is bypassed by using preformed, quiescent nuclei, replication is observed in egg but not oocyte extracts. However, the oocyte extract is not inhibitory for initiation of replication, as it does not prevent replication of sperm nuclei when mixed with egg extract. We suggest that the different capabilities of egg and oocyte extracts could provide the basis of an assay system for identifying factors involved in the initiation of DNA replication.

1992 ◽  
Vol 101 (3) ◽  
pp. 509-515
Author(s):  
A.M. Sleeman ◽  
G.H. Leno ◽  
A.D. Mills ◽  
M.P. Fairman ◽  
R.A. Laskey

We have used Xenopus laevis cell-free extracts to study patterns of DNA replication in polytene nuclei isolated from salivary glands of Drosophila melanogaster 3rd instar larvae. Replication was visualized by supplementation with biotin-dUTP so that nascent DNA became labelled, thus allowing detection with fluorescein or Texas-Red-conjugated streptavidin. Biotin incorporation was dependent on incubation in extracts. Transverse bands were labelled in high-speed supernatants of eggs or oocytes in which replication does not initiate de novo. These patterns corresponded to the patterns of endogenous replication forks in polytene nuclei, monitored by bromodeoxyuridine incorporation in intact salivary glands. By contrast, when nuclei were incubated in low-speed supernatants of eggs, they underwent more extensive chromatin decondensation and initiated replication. The spatial patterns of replication are strikingly different from the endogenous patterns. Instead they closely resemble patterns of clustered replication forks seen in Xenopus sperm nuclei replicating in the extract. This indicates that the egg extract can impose its pattern of replication foci even when the template is presented in the highly organized form of a polytene nucleus.


1996 ◽  
Vol 133 (5) ◽  
pp. 955-969 ◽  
Author(s):  
J Fang ◽  
R M Benbow

Quiescent cells from adult vertebrate liver and contact-inhibited or serum-deprived tissue cultures are active metabolically but do not carry out nuclear DNA replication and cell division. Replication of intact nuclei isolated from either quiescent Xenopus liver or cultured Xenopus A6 cells in quiescence was barely detectable in interphase extracts of Xenopus laevis eggs, although Xenopus sperm chromatin was replicated with approximately 100% efficiency in the same extracts. Permeabilization of nuclei from quiescent Xenopus liver or cultured Xenopus epithelial A6 cells did not facilitate efficient replication in egg extracts. Moreover, replication of Xenopus sperm chromatin in egg extracts was strongly inhibited by a soluble extract of isolated Xenopus liver nuclei; in contrast, complementary-strand synthesis on single-stranded DNA templates in egg extracts was not affected. Inhibition was specific to endogenous molecules localized preferentially in quiescent as opposed to proliferating cell nuclei, and was not due to suppression of cdk2 kinase activity. Extracts of Xenopus liver nuclei also inhibited growth of sperm nuclei formed in egg extracts. However, the rate and extent of decondensation of sperm chromatin in egg extracts were not affected. The formation of prereplication centers detected by anti-RP-A antibody was not affected by extracts of liver nuclei, but formation of active replication foci was blocked by the same extracts. Inhibition of DNA replication was alleviated when liver nuclear extracts were added to metaphase egg extracts before or immediately after Ca++ ion-induced transition to interphase. A plausible interpretation of our data is that endogenous inhibitors of DNA replication play an important role in establishing and maintaining a quiescent state in Xenopus cells, both in vivo and in cultured cells, perhaps by negatively regulating positive modulators of the replication machinery.


1988 ◽  
Vol 106 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M A Sheehan ◽  
A D Mills ◽  
A M Sleeman ◽  
R A Laskey ◽  
J J Blow

We have studied the pathway of nuclear assembly from demembranated sperm chromatin by fractionating a cell-free system from Xenopus eggs (Lohka, M. J., and Y. Masui. 1983. Science (Wash. DC). 220:719-721). Both the soluble fraction and a washed vesicular fraction are required for formation of normal nuclei that initiate replication in vitro. The soluble fraction alone decondenses chromatin and the vesicular fraction alone surrounds chromatin with membranes. Both fractions are required for formation of nuclear pore complexes. Recombining these two fractions recovers approximately 100% of the nuclear assembly and DNA replication activities. Restricting the proportion of the vesicular fraction slows acquisition of the nuclear membrane and allows observation of immature nuclear pores ("prepores"). These form as arrays around and within the chromatin mass before membranes form. Subsequently membrane vesicles bind to these prepores, linking them by a single membrane throughout the chromatin mass. At the periphery this single membrane is surrounded by an outer membrane. In mature nuclei all membranes are at the periphery, the two membranes are linked by pores, and no prepores are seen. Nuclear assembly and replication are inhibited by preincubating the chromatin with the vesicular fraction. However nuclear assembly is accelerated by preincubating the condensed chromatin with the soluble fraction. This also decreases the lag before DNA replication. Initiation of DNA replication is only observed after normal nuclei have fully reassembled, increasing the evidence that replication depends on nuclear structure. The pathway of nuclear assembly and its relationship to DNA replication are discussed.


1997 ◽  
Vol 110 (21) ◽  
pp. 2745-2758 ◽  
Author(s):  
Z.H. Lu ◽  
D.B. Sittman ◽  
D.T. Brown ◽  
R. Munshi ◽  
G.H. Leno

We investigated the effects of histone H1s on DNA replication using Xenopus egg extract. Mouse variants H1c and H10 were assembled onto Xenopus sperm chromatin by the extract during the remodeling that accompanies nuclear decondensation. The association of H1 with chromatin was rapid and concentration dependent. H1-associated chromatin displayed a typical nucleosomal repeat pattern indicating that linker histones are properly positioned along the DNA. The presence of H1 on sperm chromatin reduced both the rate and extent of DNA replication in egg extract. This reduction in rate is due, in part, to a delay in initiation of replication within individual nuclei. Initiation in extract is dependent upon nuclear assembly. Analysis of the assembly process revealed that H1 does not inhibit nuclear membrane formation or the import of nuclear protein, however, it does slow the rate of nuclear lamina formation. This H1-induced delay in lamina assembly is responsible for the delay in initiation as pre-assembled H1-containing nuclei initiate replication at the same time as control nuclei. However, H1 inhibits replication even when lamina assembly is complete suggesting that H1 also affects replication directly. These data indicate that H1 modulates DNA replication through multiple pathways in egg extract.


1991 ◽  
Vol 98 (3) ◽  
pp. 271-279
Author(s):  
J. Meier ◽  
K.H. Campbell ◽  
C.C. Ford ◽  
R. Stick ◽  
C.J. Hutchison

Xenopus egg extracts, which support nuclear assembly and DNA replication, were functionally depleted of lamin LIII by inoculating them with monoclonal anti-lamin antibodies. Phase-contrast microscopy and electron-microscopy studies indicated that lamin-depleted extracts supported efficient chromatin decondensation, and assembly of double membrane structures and nuclear pores on demembranated sperm heads. Immunofluorescence microscopy suggests that lamin-antibody complexes are transported across the nuclear membrane but do not assemble into a lamina. These findings were confirmed by immunoblotting analysis of isolated nuclei. Metabolic labelling studies with either biotin-11-dUTP or [32P]dCTP, revealed that nuclei lacking a lamina were unable to initiate DNA replication and that, although such nuclei could import proteins required for DNA replication (e.g. PCNA), these proteins were apparently not organized into replicon clusters.


1994 ◽  
Vol 125 (4) ◽  
pp. 705-719 ◽  
Author(s):  
S Kornbluth ◽  
M Dasso ◽  
J Newport

TC4, a ras-like G protein, has been implicated in the feedback pathway linking the onset of mitosis to the completion of DNA replication. In this report we find distinct roles for TC4 in both nuclear assembly and cell cycle progression. Mutant and wild-type forms of TC4 were added to Xenopus egg extracts capable of assembling nuclei around chromatin templates in vitro. We found that a mutant TC4 protein defective in GTP binding (GDP-bound form) suppressed nuclear growth and prevented DNA replication. Nuclear transport under these conditions approximated normal levels. In a separate set of experiments using a cell-free extract of Xenopus eggs that cycles between S and M phases, the GDP-bound form of TC4 had dramatic effects, blocking entry into mitosis even in the complete absence of nuclei. The effect of this mutant TC4 protein on cell cycle progression is mediated by phosphorylation of p34cdc2 on tyrosine and threonine residues, negatively regulating cdc2 kinase activity. Therefore, we provide direct biochemical evidence for a role of TC4 in both maintaining nuclear structure and in the signaling pathways that regulate entry into mitosis.


1997 ◽  
Vol 8 (10) ◽  
pp. 1955-1970 ◽  
Author(s):  
Robert T. Pu ◽  
Mary Dasso

Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 fromXenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran’s guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued by further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.


Sign in / Sign up

Export Citation Format

Share Document