Histone H1 modulates DNA replication through multiple pathways in Xenopus egg extract

1997 ◽  
Vol 110 (21) ◽  
pp. 2745-2758 ◽  
Author(s):  
Z.H. Lu ◽  
D.B. Sittman ◽  
D.T. Brown ◽  
R. Munshi ◽  
G.H. Leno

We investigated the effects of histone H1s on DNA replication using Xenopus egg extract. Mouse variants H1c and H10 were assembled onto Xenopus sperm chromatin by the extract during the remodeling that accompanies nuclear decondensation. The association of H1 with chromatin was rapid and concentration dependent. H1-associated chromatin displayed a typical nucleosomal repeat pattern indicating that linker histones are properly positioned along the DNA. The presence of H1 on sperm chromatin reduced both the rate and extent of DNA replication in egg extract. This reduction in rate is due, in part, to a delay in initiation of replication within individual nuclei. Initiation in extract is dependent upon nuclear assembly. Analysis of the assembly process revealed that H1 does not inhibit nuclear membrane formation or the import of nuclear protein, however, it does slow the rate of nuclear lamina formation. This H1-induced delay in lamina assembly is responsible for the delay in initiation as pre-assembled H1-containing nuclei initiate replication at the same time as control nuclei. However, H1 inhibits replication even when lamina assembly is complete suggesting that H1 also affects replication directly. These data indicate that H1 modulates DNA replication through multiple pathways in egg extract.

1990 ◽  
Vol 95 (3) ◽  
pp. 383-391
Author(s):  
J.J. Blow ◽  
A.M. Sleeman

Purified DNA undergoes a single round of semiconservative replication when incubated in extracts of Xenopus eggs. These extracts also assemble purified DNA into pseudo-nuclei, structures closely resembling normal interphase nuclei. In this paper we show that although less than 60% of purified DNA is assembled into pseudo-nuclei, DNA replication takes place only within these pseudo-nuclei. Further, when nuclear assembly is prevented, the initiation of replication on purified DNA molecules does not occur. In contrast to previous reports, we show that the initiation of DNA replication occurs only during interphase and not during mitosis, even when very high concentrations of purified DNA are used. These experiments show that nuclear formation is a general requirement for the initiation of DNA replication in this system.


1999 ◽  
Vol 10 (12) ◽  
pp. 4091-4106 ◽  
Author(s):  
Zhi Hong Lu ◽  
Hongzhi Xu ◽  
Gregory H. Leno

Quiescent nuclei from differentiated somatic cells can reacquire pluripotence, the capacity to replicate, and reinitiate a program of differentiation after transplantation into amphibian eggs. The replication of quiescent nuclei is recapitulated in extracts derived from activated Xenopus eggs; therefore, we have exploited this cell-free system to explore the mechanisms that regulate initiation of replication in nuclei from terminally differentiatedXenopus erythrocytes. We find that these nuclei lack many, if not all, pre-replication complex (pre-RC) proteins. Pre-RC proteins from the extract form a stable association with the chromatin of permeable nuclei, which replicate in this system, but not with the chromatin of intact nuclei, which do not replicate, even though these proteins cross an intact nuclear envelope. During extract incubation, the linker histones H1 and H10 are removed from erythrocyte chromatin by nucleoplasmin. We show that H1 removal facilitates the replication of permeable nuclei by increasing the frequency of initiation most likely by promoting the assembly of pre-RCs on chromatin. These data indicate that initiation in erythrocyte nuclei requires the acquisition of pre-RC proteins from egg extract and that pre-RC assembly requires the loss of nuclear envelope integrity and is facilitated by the removal of linker histone H1 from chromatin.


1990 ◽  
Vol 97 (1) ◽  
pp. 177-184
Author(s):  
L.S. Cox ◽  
G.H. Leno

We describe a cell-free extract derived from the oocytes of Xenopus laevis. The oocyte extract is capable of decondensing sperm chromatin and of replicating single-stranded DNA in a semiconservative, aphidicolin-sensitive manner. In addition, oocyte extract supports the elongation phase of DNA synthesis in nuclei that have been preinitiated for replication. All of these properties are shared by previously described egg extracts. However, oocyte extracts differ from egg extracts in two important ways. First, they cannot support nuclear assembly, as visualised by phase-contrast, fluorescence and electron microscopy. Second, they do not initiate replication on chromatin or nuclei de novo. Crude low-speed supernatants can be partially fractionated into soluble and vesicular components by high-speed centrifugation. Such fractions from eggs can be functionally reconstituted, but the oocyte soluble fraction does not acquire the ability to assemble nuclei, or replicate them, even when supplemented with the egg vesicular fraction. Similarly, oocyte vesicles cannot substitute for egg vesicles on reconstitution with the egg soluble fraction. When the requirement for nuclear assembly is bypassed by using preformed, quiescent nuclei, replication is observed in egg but not oocyte extracts. However, the oocyte extract is not inhibitory for initiation of replication, as it does not prevent replication of sperm nuclei when mixed with egg extract. We suggest that the different capabilities of egg and oocyte extracts could provide the basis of an assay system for identifying factors involved in the initiation of DNA replication.


1995 ◽  
Vol 15 (6) ◽  
pp. 2942-2954 ◽  
Author(s):  
D M Gilbert ◽  
H Miyazawa ◽  
M L DePamphilis

Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, heritable sites. Here we show that Xenopus egg extract can initiate DNA replication at specific sites in mammalian chromosomes, but only when the DNA is presented in the form of an intact nucleus. Initiation of DNA synthesis in nuclei isolated from G1-phase Chinese hamster ovary cells was distinguished from continuation of DNA synthesis at preformed replication forks in S-phase nuclei by a delay that preceded DNA synthesis, a dependence on soluble Xenopus egg factors, sensitivity to a protein kinase inhibitor, and complete labeling of nascent DNA chains. Initiation sites for DNA replication were mapped downstream of the amplified dihydrofolate reductase gene region by hybridizing newly replicated DNA to unique probes and by hybridizing Okazaki fragments to the two individual strands of unique probes. When G1-phase nuclei were prepared by methods that preserved the integrity of the nuclear membrane, Xenopus egg extract initiated replication specifically at or near the origin of bidirectional replication utilized by hamster cells (dihydrofolate reductase ori-beta). However, when nuclei were prepared by methods that altered nuclear morphology and damaged the nuclear membrane, preference for initiation at ori-beta was significantly reduced or eliminated. Furthermore, site-specific initiation was not observed with bare DNA substrates, and Xenopus eggs or egg extracts replicated prokaryotic DNA or hamster DNA that did not contain a replication origin as efficiently as hamster DNA containing ori-beta. We conclude that initiation sites for DNA replication in mammalian cells are established prior to S phase by some component of nuclear structure and that these sites can be activated by soluble factors in Xenopus eggs.


1998 ◽  
Vol 9 (5) ◽  
pp. 1163-1176 ◽  
Author(s):  
Zhi Hong Lu ◽  
Donald B. Sittman ◽  
Piotr Romanowski ◽  
Gregory H. Leno

Somatic histone H1 reduces both the rate and extent of DNA replication in Xenopus egg extract. We show here that H1 inhibits replication directly by reducing the number of replication forks, but not the rate of fork progression, in Xenopussperm nuclei. Density substitution experiments demonstrate that those forks that are active in H1 nuclei elongate to form large tracts of fully replicated DNA, indicating that inhibition is due to a reduction in the frequency of initiation and not the rate or extent of elongation. The observation that H1 dramatically reduces the number of replication foci in sperm nuclei supports this view. The establishment of replication competent DNA in egg extract requires the assembly of prereplication complexes (pre-RCs) on sperm chromatin. H1 reduces binding of the pre-RC proteins, XOrc2, XCdc6, and XMcm3, to chromatin. Replication competence can be restored in these nuclei, however, only under conditions that promote the loss of H1 from chromatin and licensing of the DNA. Thus, H1 inhibits replication in egg extract by preventing the assembly of pre-RCs on sperm chromatin, thereby reducing the frequency of initiation. These data raise the interesting possibility that H1 plays a role in regulating replication origin use during Xenopus development.


1993 ◽  
Vol 122 (5) ◽  
pp. 985-992 ◽  
Author(s):  
D Coverley ◽  
CS Downes ◽  
P Romanowski ◽  
RA Laskey

We have investigated the mechanism which prevents reinitiation of DNA replication within a single cell cycle by exploiting the observation that intact G2 HeLa nuclei do not replicate in Xenopus egg extract, unless their nuclear membranes are first permeabilized (Leno et al., 1992). We have asked if nuclear membrane permeabilization allows escape of a negative inhibitor from the replicated nucleus or entry of a positive activator as proposed in the licensing factor hypothesis of Blow and Laskey (1988). We have distinguished these possibilities by repairing permeabilized nuclear membranes after allowing soluble factors to escape. Membrane repair of G2 nuclei reverses the effects of permeabilization arguing that escape of diffusible inhibitors is not sufficient to allow replication, but that entry of diffusible activators is required. Membrane repair has no significant effect on G1 nuclei. Pre-incubation of permeable G2 nuclei in the soluble fraction of egg extract before membrane repair allows semiconservative DNA replication of these nuclei when incubated in complete extract. Addition of the same fraction after membrane repair has no effect. Our results provide direct evidence for a positively acting "licensing" activity which is excluded form the interphase nucleus by the nuclear membrane. Nuclear membrane permeabilization and repair can be used as an assay for licensing activity which could lead to its purification and subsequent analysis of its action within the nucleus.


1996 ◽  
Vol 109 (9) ◽  
pp. 2275-2286 ◽  
Author(s):  
C. Zhang ◽  
H. Jenkins ◽  
M.W. Goldberg ◽  
T.D. Allen ◽  
C.J. Hutchison

Nuclear lamina and matrices were prepared from sperm pronuclei assembled in Xenopus egg extracts using a fractionation and extraction procedure. Indirect immunofluorescence revealed that while chromatin was efficiently removed from nuclei during the extraction procedure, the distribution of lamins was unaffected. Consistent with this data, the amount of lamin B3, determined by immunoblotting, was not affected through the extraction procedure. Nuclear matrices were visualised in DGD sections by TEM. Within these sections filaments were observed both at the boundary of the nucleus (the lamina) and within the body of the nucleus (internal nuclear matrix filaments). To improve resolution, nuclear matrices were also prepared as whole mounts and viewed using field emission in lens scanning electron microscopy (FEISEM). This technique revealed two distinct networks of filaments. Filaments lying at the surface of nuclear matrices interconnected nuclear pores. These filaments were readily labelled with monoclonal anti-lamin B3 antibodies. Filaments lying within the body of the nuclear matrix were highly branched but were not readily labelled with antilamin B3 antibodies. Nuclear matrices were also prepared from sperm pronuclei assembled in lamin B3 depleted extracts. Using FEISEM, filaments were also detected in these preparations. However, these filaments were poorly organised and often appeared to aggregate. To confirm these results nuclear matrices were also observed as whole mounts using TEM. Nuclear matrices prepared from control nuclei contained a dense array of interconnected filaments. Many (but not all) of these filaments were labelled with anti-lamin B3 antibodies. In contrast, nuclear matrices prepared from “lamin depleted nuclei' contained poorly organised or aggregated filaments which were not specifically labelled with anti-lamin B3 antibodies.


1997 ◽  
Vol 110 (17) ◽  
pp. 2053-2063 ◽  
Author(s):  
P. Bell ◽  
C. Mais ◽  
B. McStay ◽  
U. Scheer

When nuclei (pronuclei) were assembled from sperm chromatin in Xenopus egg extract and examined by immunofluorescence microscopy, UBF was concentrated at a single intranuclear dot-like or more extended necklace-like structure. These UBF-foci contained rDNA as demonstrated by in situ hybridization and hence represent the chromosomal nucleolus organizing regions (NORs). Besides UBF, other components of the transcription machinery such as the TATA-box binding protein (TBP) and RNA polymerase I (pol I) as well as several nucleolar proteins could not be detected at the NORs. Immuno-depletion experiments indicated the UBF is maternally provided and taken up by the pronuclei. Essentially the same results were obtained when we examined the NORs of early Xenopus embryos up to the midblastula stage. After this stage, when transcription of the rRNA genes has begun, nucleoli developed and the NORs acquired TBP and pol I. Our results support the hypothesis that UBF is an architectural element which converts the rDNA chromatin into a transcriptionally competent form.


Sign in / Sign up

Export Citation Format

Share Document