An Anatomical, Histological, and Histochemical Study of the Gut of the Brachiopod, Crania Anomala

1960 ◽  
Vol s3-101 (53) ◽  
pp. 9-18
Author(s):  
S. H. CHUANG

The gut of Crania anomala has been studied morphologically and histochemically. It is attached to the body-wall by dorsal and ventral mesenteries with the exception of the posterior part of the intestine, which lies free in the right half of the visceral cavity. The gut-wall consists of an inner columnar epithelium, a connective-tissue stroma, and an investing squamous mesothelium. The columnar epithelium comprises ordinary epithelial cells, some goblet cells, and occasional phagocytes. The cytoplasmic inclusions of the gut epithelium include pigment granules, glycogen granules, lipochondria, and goblet-cell globules. The lipochondria contain a phospholipid. The goblet-cell globules contain a muco- or glycoprotein, and are extruded into the lumen of the gut presumably for lubrication and for the entanglement of food particles. Extranuclear DNA, presumably originating from the nucleus, occurs in the cytoplasm of the ordinary epithelial cells in the digestive diverticula.

1923 ◽  
Vol 5 (3) ◽  
pp. 327-333 ◽  
Author(s):  
A. R. Moore

1. By the use of preparations of earthworm in which the cutaneous receptors have been anesthetized with a solution of M/8 MgCl2, it is shown that peristalsis can be initiated by tension alone. 2. The receptors of the tension reflex are the intermyal sensory cells of the ventral region of the body wall. 3. It is concluded that Straub obtained the tension reflex because his preparations contained the intermyal receptors; Budington was unable to observe the tension reflex in any preparation from which the intermyal receptors had been removed. 4. Intermyal receptors are the receptors of the following reaction: Passive unilateral tension of the posterior part of an earthworm induces active homolateral tension of the musculature of the anterior segments, and results in the course of progress being brought into line with the enforced orientation of the tail. This reaction is termed the homostrophic reflex. 5. The receptors for the reaction are distributed throughout the entire length of the worm, the effectors are limited to the anterior 15 to 20 segments. The impulse is conducted by the ventral nerve cord. 6. The interaction of the homostrophic reflex and tropisms is considered.


1969 ◽  
Vol 50 (1) ◽  
pp. 129-140 ◽  
Author(s):  
M. S. LAVERACK

1. Mechanoreceptors in the body wall of the leech Hirudo are stimulated by deformation of the animal's surface. They respond at all frequencies of stimulation up to about 50-60 Hz. 2. Light flashes, from a microscope lamp or an electronic flash source, are also a potent means of peripheral stimulation. 3. After peripheral stimulation impulses can be recorded in a fast central pathway. This pathway conducts equally well in the posterior to anterior and in the opposite directions. 4. Interference with either the right or left connective linking any two segmental ganglia does not interrupt the rapid conduction of these impulses. 5. Severance of the median connective or Faivre's nerve interrupts conduction. This seems to implicate at least one, and possibly more, of the nerve fibres of this median connective in the rapid transmission of information from the extremities of the body. 6. A slower conducting pathway also exists in the nerve cord.


Parasitology ◽  
1965 ◽  
Vol 55 (3) ◽  
pp. 503-514 ◽  
Author(s):  
D. W. T. Crompton

The distribution of glycogen has been studied in P. minutus by means of histochemical methods. The strongest staining for glycogen was detected in the proboscis, the radial layer of the body wall and the non-contractile parts of the muscles.Histochemical methods have also been used to study the localization of the activity of ten oxidoreductase enzymes. The enzymes are situated in the mitochondria of P. minutus, the distribution of which corresponds closely with that of glycogen.I am grateful to Dr P. Tate for helpful discussions, and to Drs D. L. Lee and F. P. B. Wooding for criticizing the manuscript. Thanks are also due to Mr D. Barnard for technical assistance.


1997 ◽  
Vol 21 (1) ◽  
pp. 68
Author(s):  
Emiko Furuta ◽  
Keiichiro Yamaguchi ◽  
Hiroaki Nakamura ◽  
Shin-ichi Kikuchi
Keyword(s):  

1955 ◽  
Vol s3-96 (34) ◽  
pp. 161-168
Author(s):  
A. C. CHRISTIE

1. A histochemical study has been made of the cytoplasmic inclusions of the epithelial cells lining the storage section of the canal in the head of the epididymis of the mouse. 2. Spherical bodies, usually situated in the vicinity of the nucleus and here referred to as juxta-nuclear bodies, are shown to consist of cerebroside with some phospholipid. The juxta-nuclear bodies have been regarded by other authors as derived from the nucleolus, but there is no histochemical similarity. 3. A large supra-nuclear body exists, consisting of a matrix of protein and carbohydrate with enmeshed spheres. The latter do not colour with any dye or histochemical reagent used in this investigation. They are partially or completely surrounded by rims or crescents consisting wholly or mainly of lipid. 4. Droplets and much smaller granules are present in the region between the supranuclear body and the free border of the cell. The contents of the former show no histochemical evidence of the presence of organic matter, while the latter consist of protein and carbohydrate.


1940 ◽  
Vol s2-82 (326) ◽  
pp. 267-309
Author(s):  
J. B. SMITH

1. The organs associated, either directly or indirectly, with reproduction in the Ophiuroidea are the axial organ and related sinuses (axial organ complex), the genital raehis, the gonads (localized expansions of the raehis), the gonoducts, and the genital bursae. 2. Evidence is presented in favour of the view of Fedotov (1924) that the axial organ of Ophiuroids is made up of two closely associated parts each surrounded by its own sinus from the wall of which it is, during development, proliferated. The left axial sinus (aboral in the adult) is derived from the left anterior coelom of the larva, the right axial sinus (oral in the adult) from the madreporie vesicle which itself is a derivative of the right anterior coelom of the larva. 3. The ampulla of the stone canal is continuous with, and is part of, the left axial sinus. 4. An account is given of the morphology and histology of the genital rachis and sinus. 5. Examination of the gonads of female Ophiothrix indicate that the breeding season extends from about March to October and that, during this time, there is periodic emission of ova, probably at monthly intervals. Males, on the other hand, produce sperm all the year round. 6. The genital bursae number two pairs to each interradial pouch. They serve, primarily, as organs of respiration. Special mechanisms, which are described, are concerned in the intake and expulsion of water. 7. The gonads do not discharge their products directly into the genital bursae nor through temporarily formed pores in the body-wall but through specially developed and permanent gonoducts, one to each of the ten gonads. 8. Young specimens found in the genital bursae have attained their position only after a period of free-swimming larval life. After settling and metamorphosing, some of the young individuals crawl into the bursae. 9. As a consequence of the previous observation it is pointed out that the presence of the young within the genital bursae of the adult is by no means an indication of a viviparous habit.


An account is given of the anatomy of a series of opisthobranch molluscs principally to assess the change in importance and functioning of the mantle cavity and columellar muscle throughout the transition from prosobranch to opisthobranch organization. Intermediate steps are represented by living tectibranchs, of which Philine and Scaphander are investigated in detail, Acteon, Bulla, Haminoea, Akera, Aglaja and Gastropteron more briefly. Though an opisthobranch, Acteon has an organization typical of a monotocardian prosobranch; the remainder show trends affecting the shell and visceral mass, mantle cavity and head-foot, which resulted finally in the production of nudibranch types. It is confirmed that the adaptations exhibited by primitive tectibranchs relate to the assumption of a burrowing mode of life. Initial changes were the reduction of the nuchal area and sealing of the mantle cavity anteriorly so that it opened on the right, where it became restricted, the first perhaps prompting the sealing. A broadening and an anterior elongation of the head-foot produced a wedge to facilitate burrowing. Change in disposition of the mantle edge, incurred by differential growth, produced an involute shell with a large body whorl, alignment changing from erect to horizontal. The resultant streamlining eased infaunal progression; no vertical insinking of the viscera was involved. Subsequently the shell became reduced and finally lost. A section of the mantle edge enlarged to produce a posterior mantle lobe upon which sit both the shell and viscera, and which later became redundant as posterior elongation of the head-foot produced a slug-like form, the viscera being incorporated within the head-foot. As the nuchal area became reduced, mechanical needs prompted alteration to both the form and attachment of the columellar muscle. In Acteon the muscle is like that of a prosobranch, but the proximal region has broadened, a change of proportion required by primitive tectibranchs in order to support the floor of the mantle cavity formed from the section of mantle skirt which in prosobranchs lies on the right. This was followed by reduction and re-alignment of the entire muscle along an anteroposterior axis as emphasis changed from the muscle effecting retraction into a shell to producing contorsions of the head-foot. The shell, similarly reduced, instead of providing anchorage, became itself anchored by additional anterior and posterior attachment zones with, in more advanced forms, dorsoventral muscles of the body wall rather than longitudinal muscles fastening to the former. Importance was placed on the mutual stabilization of constituent parts of the posterior body region. Re-alignment of the muscle induced breaking up of the longitudinal muscle sheet of the head-foot to produce muscle tracts, best exhibited in those tectibranchs which swim; they are derived from both the columellar muscle and intrinsic body wall muscles. In advanced opisthobranchs, the importance of the columellar muscle progressively diminishes and it is finally lost in the adult. The mantle cavity shallowed, partially due to lack of space on the right where the mantle abuts against the viscera, but principally to avoid instability of its walls. Without support the walls will, especially in larger animals, tend to collapse owing to the restricted inhalant flow of water caused by the absence of an effective siphon and the adverse infaunal conditions. The floor may tend perhaps to be pushed laterally by increases in pressure within underlying haemocoelic spaces. Tensor muscles arose to stabilize the floor, for this became distinct from the thickened mantle edge represented by the posterior mantle lobe, and viscera were interpolated between the inner surfaces of the two regions of this section of the mantle skirt. The separation of surfaces was a consequence of the creation of space posteriorly by reduction of the nuchal area, shell and proximal columellar muscle, all adaptations to produce a slug-like form; the first was the most important at an early stage in evolution, the latter two at a later stage. There is no evidence that any tensor muscle is derived from the columellar muscle It is suggested that the first opisthobranchs were small, a feature which almost certainly favoured colonization of the infaunal niche, and lacked a gill, water flow being produced by ciliated bands as in various small gastropods. Upon a subsequent increase in size, a gill of different pattern to the prosobranch ctenidium evolved which is not important in producing water flow. The pallial caecum is a further respiratory innovation to offset functional inefficiencies which might otherwise have been incurred upon the increase in size which was undertaken under conditions of poor ventilation. Respiratory exchange was also facilitated by fusion of the pallial caecum to the visceral mass ( Philine, Aglaja, Akera ), which also enabled tensor muscles to attach to and stabilize its floor. In Philine , the roof also is stabilized by areas which adhere to the shell thereby ensuring that this caecum is always fully open. Discussion of both the mantle complex and columellar muscle indicates a high incidence of parallelism. It is suggested that the term detorsion be discarded. No rotation of the mantle skirt took place, but differential growth followed by folding to which the term posterior migration has been applied. Discussion of developmental studies indicates that torsion in opisthobranchs is halted at a stage which approximately corresponds to the position of the mantle complex in the adult, and in more advanced forms torsion is essentially abolished. The final changes leading to the assumption of the nudibranch condition, and the phylogenetic interrelations of the animals investigated are briefly discussed. It is concluded that the general pattern of opisthobranch evolution was one of initial assumption of infaunal life, followed, after varying intervals of time, by return to the surface; only a few groups, of which the Philinidae are a good example, have fully exploited the infaunal niche.


Parasitology ◽  
1971 ◽  
Vol 63 (3) ◽  
pp. 491-506 ◽  
Author(s):  
R. A. Wilson ◽  
P. Pullin ◽  
Jean Denison

The penetration barrier presented to the miracidium by the snail epithelium can be divided into three layers. The chemical composition and physical configuration of the outermost of these plays an important part in the initial attachment response of the miracidium. Attachment can be stimulated in the absence of the snail by pure chemicals in solution. However, the surface to which the miracidium attaches must have the correct physical configuration otherwise the miracidium is unable to form a stable attachment.In vivo, the miracidial body begins to contract and relax following attachment to the snail. This coincides with the start of secretion by the apical gland and accessory gland cells. The snail's columnar epithelium is rapidly cytolysed so that 10 min after attachment the anterior of the miracidium has reached the underlying connective tissues.As the miracidium penetrates the snail, its ciliated epithelial cells are shed in sequence from anterior to posterior. This shedding removes a protective barrier against osmosis which is probably the acid mucopolysaccharide present in the epithelial cells. The mechanism of shedding is not understood but involves the reversal of binding by the desmosomal mucosubstance which attaches the epithelial cells to surrounding intercellular ridges.The miracidium metamorphoses into the sporocyst as it penetrates the snail, by forming a new body surface. The material for this is extruded from the vesiculated cells which lie beneath the musculature of the body wall. The process of surface formation coincides with cell shedding and moves backwards as cells are shed. At not more than 2·5 h after attachment the extruded cytoplasm forms a thin continuous layer over the surface of the organism. Contacts with underlying cells appear to have been broken and the cytoplasm is underlain by a thin fibrous basal lamella. In the first 24 h after penetration the surface of this syncytium becomes thrown into folds and metamorphosis into the sporocyst can be considered complete.


1960 ◽  
Vol 38 (1) ◽  
pp. 47-49 ◽  
Author(s):  
L. Y. Wu

Further studies of Ditylenchus destructor Thorne, 1945, showed that the lips frequently have very fine annules. The lateral field of the body wall usually had 6 incisures but the number varied from 6 to 11. The cervical papillae appeared to lie in the region between the median bulb and the esophagointestinal junction between the two inner incisures. The excretory system had a long, sclerotized, terminal duct and a single lateral canal usually on the right side.


Author(s):  
Anupriya Kaur ◽  
Arun Prasad ◽  
Jessy Jayaraman Pushpaja ◽  
Kanchan Kapoora

Thoracoschisis and gastroschisis are types of ventral body wall defects. Usually thoracoabdominoschisis presents as a continuous defect. Here the authors present the case of autopsy of 18 weeks old fetus with two well-separated ventral body wall defects. Thoracoschisis was a right lateral thoracic wall defect while gastroschisis, a midline infraumblical abdominal wall defect. Through the right lateral thoracic wall parts of two organs appeared to be protruding. On dissection, 8th and 9th ribs with the liver and the lower lobe of the right lung were herniating outside the body. The right lung was haemorrhagic. Various embryological theories on ventral body wall defects have been discussed in view of the present case.


Sign in / Sign up

Export Citation Format

Share Document