peripheral stimulation
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 30)

H-INDEX

33
(FIVE YEARS 1)

Author(s):  
Yosuke Suzuki ◽  
Jose Gomez-Tames ◽  
Yinliang Diao ◽  
Akimasa Hirata

The external field strength according to the international guidelines and standards for human protection are derived to prevent peripheral nerve system pain at frequencies from 300–750 Hz to 1 MHz. In this frequency range, the stimulation is attributable to axon electrostimulation. One limitation in the current international guidelines is the lack of respective stimulation thresholds in the brain and peripheral nervous system from in vivo human measurements over a wide frequency range. This study investigates peripheral stimulation thresholds using a multi-scale computation based on a human anatomical model for uniform exposure. The nerve parameters are first adjusted from the measured data to fit the peripheral nerve in the trunk. From the parameters, the external magnetic field strength to stimulate the nerve was estimated. Here, the conservativeness of protection limits of the international guidelines and standards for peripheral stimulation was confirmed. The results showed a margin factor of 4–6 and 10–24 times between internal and external protection limits of Institute of Electrical and Electronics Engineers standard (IEEE C95.1) and International Commission on Non-Ionizing Radiation Protection guidelines, with the computed pain thresholds.


Author(s):  
Anton Sonntag ◽  
Carina Kelbsch ◽  
Ronja Jung ◽  
Helmut Wilhelm ◽  
Torsten Strasser ◽  
...  

Abstract Purpose To assess the effect of central and peripheral stimulation on the pupillary light reflex. The aim was to detect possible differences between cone- and rod-driven reactions. Methods Relative maximal pupil constriction amplitude (relMCA) and latency to constriction onset (latency) to cone- and rod-specific stimuli of 30 healthy participants (24 ± 5 years (standard deviation)) were measured using chromatic pupil campimetry. Cone- and rod-specific stimuli had different intensities and wavelengths according to the Standards in Pupillography. Five filled circles with radii of 3°, 5°, 10°, 20° and 40° and four rings with a constant outer radius of 40° and inner radii of 3°, 5°, 10° and 20° were used as stimuli. Results For cone-and rod-specific stimuli, relMCA increased with the stimulus area for both, circles and rings. However, increasing the area of a cone-specific ring by minimizing its inner radius with constant outer radius increased relMCA significantly stronger than the same did for a rod-specific ring. For cones and rods, a circle stimulus with a radius of 40° created a lower relMCA than the summation of the relMCAs to the corresponding ring and circle stimuli which combined create a 40° circle-stimulus. Latency was longer for rods than for cones. It decreased with increasing stimulus area for circle stimuli while it stayed nearly constant with increasing ring stimulus area for cone- and rod-specific stimuli. Conclusion The effect of central stimulation on relMCA is more dominant for cone-specific stimuli than for rod-specific stimuli while latency dynamics are similar for both conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carolina Reis ◽  
Beatriz S. Arruda ◽  
Alek Pogosyan ◽  
Peter Brown ◽  
Hayriye Cagnan

AbstractEssential tremor is a common neurological disorder, characterised by involuntary shaking of a limb. Patients are usually treated using medications which have limited effects on tremor and may cause side-effects. Surgical therapies are effective in reducing essential tremor, however, the invasive nature of these therapies together with the high cost, greatly limit the number of patients benefiting from them. Non-invasive therapies have gained increasing traction to meet this clinical need. Here, we test a non-invasive and closed-loop electrical stimulation paradigm which tracks peripheral tremor and targets thalamic afferents to modulate the central oscillators underlying tremor. To this end, 9 patients had electrical stimulation delivered to the median nerve locked to different phases of tremor. Peripheral stimulation induced a subtle but significant modulation in five out of nine patients—this modulation consisted mainly of amplification rather than suppression of tremor amplitude. Modulatory effects of stimulation were more pronounced when patient’s tremor was spontaneously weaker at stimulation onset, when significant modulation became more frequent amongst subjects. This data suggests that for selected individuals, a more sophisticated control policy entailing an online estimate of both tremor phase and amplitude, should be considered in further explorations of the treatment potential of tremor phase-locked peripheral stimulation.


Cureus ◽  
2021 ◽  
Author(s):  
Jamal Hasoon ◽  
Ahish Chitneni ◽  
Ivan Urits ◽  
Omar Viswanath ◽  
Alan D Kaye

2021 ◽  
Vol 22 (7) ◽  
pp. 3712
Author(s):  
Eva Uchytilova ◽  
Diana Spicarova ◽  
Jiri Palecek

Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels.


2021 ◽  
Vol 347 ◽  
pp. 108959
Author(s):  
L. Caranzano ◽  
M.A. Stephan ◽  
M. Bedulli ◽  
F.R. Herrmann ◽  
D.H. Benninger

2020 ◽  
Vol 55 ◽  
pp. 102477
Author(s):  
Mehmet Berke Göztepe ◽  
Mustafa Görkem Özyurt ◽  
Kemal Sitki Türker ◽  
Hilmi Uysal

Sign in / Sign up

Export Citation Format

Share Document