scholarly journals Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis

2007 ◽  
Vol 210 (13) ◽  
pp. 2253-2266 ◽  
Author(s):  
J. E. Podrabsky ◽  
J. P. Lopez ◽  
T. W. M. Fan ◽  
R. Higashi ◽  
G. N. Somero
2017 ◽  
Vol 49 (9) ◽  
pp. 505-518 ◽  
Author(s):  
Claire L. Riggs ◽  
Jason E. Podrabsky

Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death. Studies on sncRNA and anoxia have focused on these anoxia-sensitive species. Studying sncRNAs in anoxia-tolerant organisms may provide insight into adaptive mechanisms supporting anoxia tolerance. Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrates known, surviving over 100 days at their peak tolerance at 25°C. Their anoxia tolerance and physiology vary over development, such that both anoxia-tolerant and anoxia-sensitive phenotypes comprise the species. This allows for a robust comparison to identify sncRNAs essential to anoxia-tolerance. For this study, RNA sequencing was used to identify and quantify expression of sncRNAs in four embryonic stages of A. limnaeus in response to an exposure to anoxia and subsequent aerobic recovery. Unique stage-specific patterns of expression were identified that correlate with anoxia tolerance. In addition, embryos of A. limnaeus appear to constitutively express stress-responsive miRNAs. Most differentially expressed sncRNAs were expressed at higher levels during recovery. Many novel groups of sncRNAs with expression profiles suggesting a key role in anoxia tolerance were identified, including sncRNAs derived from mitochondrial tRNAs. This global analysis has revealed groups of candidate sncRNAs that we hypothesize support anoxia tolerance.


2020 ◽  
Vol 223 (20) ◽  
pp. jeb229716 ◽  
Author(s):  
Daniel E. Zajic ◽  
Jason E. Podrabsky

ABSTRACTIn most vertebrates, a lack of oxygen quickly leads to irreparable damages to vital organs, such as the brain and heart. However, there are some vertebrates that have evolved mechanisms to survive periods of no oxygen (anoxia). The annual killifish (Austrofundulus limnaeus) survives in ephemeral ponds in the coastal deserts of Venezuela and their embryos have the remarkable ability to tolerate anoxia for months. When exposed to anoxia, embryos of A. limnaeus respond by producing significant amounts of γ-aminobutyric acid (GABA). This study aims to understand the role of GABA in supporting the metabolic response to anoxia. To explore this, we investigated four developmentally distinct stages of A. limnaeus embryos that vary in their anoxia tolerance. We measured GABA and lactate concentrations across development in response to anoxia and aerobic recovery. We then inhibited enzymes responsible for the production and degradation of GABA and observed GABA and lactate concentrations, as well as embryo mortality. Here, we show for the first time that GABA metabolism affects anoxia tolerance in A. limnaeus embryos. Inhibition of enzymes responsible for GABA production (glutamate decarboxylase) and degradation (GABA-transaminase and succinic acid semialdehyde dehydrogenase) led to increased mortality, supporting a role for GABA as an intermediate product and not a metabolic end-product. We propose multiple roles for GABA during anoxia and aerobic recovery in A. limnaeus embryos, serving as a neurotransmitter, an energy source, and an anti-oxidant.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Claire L. Riggs ◽  
Steven Cody Woll ◽  
Jason E. Podrabsky

AbstractEmbryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrate. Annual killifish inhabit ephemeral ponds, producing drought and anoxia-tolerant embryos, which allows the species to persist generation after generation. Anoxia tolerance and physiology vary by developmental stage, creating a unique opportunity for comparative study within the species. A recent study of small ncRNA expression in A. limnaeus embryos in response to anoxia and aerobic recovery revealed small ncRNAs with expression patterns that suggest a role in supporting anoxia tolerance. MitosRNAs, small ncRNAs derived from the mitochondrial genome, emerged as an interesting group of these sequences. MitosRNAs derived from mitochondrial tRNAs were differentially expressed in developing embryos and isolated cells exhibiting extreme anoxia tolerance. In this study we focus on expression of mitosRNAs derived from tRNA-cysteine, and their subcellular and organismal localization in order to consider possible function. These tRNA-cys mitosRNAs appear enriched in the mitochondria, particularly near the nucleus, and also appear to be present in the cytoplasm. We provide evidence that mitosRNAs are generated in the mitochondria in response to anoxia, though the precise mechanism of biosynthesis remains unclear. MitosRNAs derived from tRNA-cys localize to numerous tissues, and increase in the anterior brain during anoxia. We hypothesize that these RNAs may play a role in regulating gene expression that supports extreme anoxia tolerance.


2019 ◽  
Vol 222 (12) ◽  
pp. jeb204347 ◽  
Author(s):  
Josiah T. Wagner ◽  
Michael J. Knapp ◽  
Jason E. Podrabsky

2011 ◽  
Vol 174 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Benjamin M. Pri-Tal ◽  
Steven Blue ◽  
Francis K.-Y. Pau ◽  
Jason E. Podrabsky

2013 ◽  
Vol 184 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Camie L. Meller ◽  
Robert Meller ◽  
Roger P. Simons ◽  
Jason E. Podrabsky

Sign in / Sign up

Export Citation Format

Share Document