small ncrnas
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 19)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Ming-Che Kuo ◽  
Sam Chi-Hao Liu ◽  
Ya-Fang Hsu ◽  
Ruey-Meei Wu

AbstractThe discovery of various noncoding RNAs (ncRNAs) and their biological implications is a growing area in cell biology. Increasing evidence has revealed canonical and noncanonical functions of long and small ncRNAs, including microRNAs, long ncRNAs (lncRNAs), circular RNAs, PIWI-interacting RNAs, and tRNA-derived fragments. These ncRNAs have the ability to regulate gene expression and modify metabolic pathways. Thus, they may have important roles as diagnostic biomarkers or therapeutic targets in various diseases, including neurodegenerative disorders, especially Parkinson’s disease. Recently, through diverse sequencing technologies and a wide variety of bioinformatic analytical tools, such as reverse transcriptase quantitative PCR, microarrays, next-generation sequencing and long-read sequencing, numerous ncRNAs have been shown to be associated with neurodegenerative disorders, including Parkinson’s disease. In this review article, we will first introduce the biogenesis of different ncRNAs, including microRNAs, PIWI-interacting RNAs, circular RNAs, long noncoding RNAs, and tRNA-derived fragments. The pros and cons of the detection platforms of ncRNAs and the reproducibility of bioinformatic analytical tools will be discussed in the second part. Finally, the recent discovery of numerous PD-associated ncRNAs and their association with the diagnosis and pathophysiology of PD are reviewed, and microRNAs and long ncRNAs that are transported by exosomes in biofluids are particularly emphasized.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2512
Author(s):  
Giulia Buonaiuto ◽  
Fabio Desideri ◽  
Valeria Taliani ◽  
Monica Ballarino

The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.


Author(s):  
Dong Li ◽  
Ying Ge ◽  
Ze Zhao ◽  
Rui Zhu ◽  
Xiang Wang ◽  
...  

Small non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), play a pivotal role in biological processes. A comprehensive quantitative reference of small ncRNAs expression during development and in DNA damage response (DDR) would significantly advance our understanding of their roles. In this study, we systemically analyzed the expression profile of miRNAs and piRNAs in wild-type flies, e2f1 mutant, p53 mutant and e2f1 p53 double mutant during development and after X-ray irradiation. By using small RNA sequencing and bioinformatic analysis, we found that both miRNAs and piRNAs were expressed in a dynamic mode and formed 4 distinct clusters during development. Notably, the expression pattern of miRNAs and piRNAs was changed in e2f1 mutant at multiple developmental stages, while retained in p53 mutant, indicating a critical role of E2f1 played in mediating small ncRNAs expression. Moreover, we identified differentially expressed (DE) small ncRNAs in e2f1 mutant and p53 mutant after X-ray irradiation. Furthermore, we mapped the binding motif of E2f1 and p53 around the small ncRNAs. Our data suggested that E2f1 and p53 work differently yet coordinately to regulate small ncRNAs expression, and E2f1 may play a major role to regulate miRNAs during development and after X-ray irradiation. Collectively, our results provide comprehensive characterization of small ncRNAs, as well as the regulatory roles of E2f1 and p53 in small ncRNAs expression, during development and in DNA damage response, which reveal new insights into the small ncRNAs biology.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Silu Chen ◽  
Shuai Ben ◽  
Junyi Xin ◽  
Shuwei Li ◽  
Rui Zheng ◽  
...  

AbstractSmall non-coding RNAs (ncRNAs) are vital regulators of biological activities, and aberrant levels of small ncRNAs are commonly found in precancerous lesions and cancer. PIWI-interacting RNAs (piRNAs) are a novel type of small ncRNA initially discovered in germ cells that have a specific length (24–31 nucleotides), bind to PIWI proteins, and show 2′-O-methyl modification at the 3′-end. Numerous studies have revealed that piRNAs can play important roles in tumorigenesis via multiple biological regulatory mechanisms, including silencing transcriptional and posttranscriptional gene processes and accelerating multiprotein interactions. piRNAs are emerging players in the malignant transformation of normal cells and participate in the regulation of cancer hallmarks. Most of the specific cancer hallmarks regulated by piRNAs are involved in sustaining proliferative signaling, resistance to cell death or apoptosis, and activation of invasion and metastasis. Additionally, piRNAs have been used as biomarkers for cancer diagnosis and prognosis and have great potential for clinical utility. However, research on the underlying mechanisms of piRNAs in cancer is limited. Here, we systematically reviewed recent advances in the biogenesis and biological functions of piRNAs and relevant bioinformatics databases with the aim of providing insights into cancer diagnosis and clinical applications. We also focused on some cancer hallmarks rarely reported to be related to piRNAs, which can promote in-depth research of piRNAs in molecular biology and facilitate their clinical translation into cancer treatment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Heming Wang ◽  
Rong Huang ◽  
Ling Li ◽  
Junjin Zhu ◽  
Zhihong Li ◽  
...  

AbstractHigh-throughput sequencing reveals the complex landscape of small noncoding RNAs (sRNAs). However, it is limited by requiring 5′-monophosphate and 3′-hydroxyl in RNAs for adapter ligation and hindered by methylated nucleosides that interfere with reverse transcription. Here we develop Cap-Clip acid pyrophosphatase (Cap-Clip), T4 polynucleotide kinase (PNK) and AlkB/AlkB(D135S)-facilitated small ncRNA sequencing (CPA-seq) to detect and quantify sRNAs with terminus multiplicities and nucleoside methylations. CPA-seq identified a large number of previously undetected sRNAs. Comparison of sRNAs with or without AlkB/AlkB(D135S) treatment reveals nucleoside methylations on sRNAs. Using CPA-seq, we profiled the sRNA transcriptomes (sRNomes) of nine mouse tissues and reported the extensive tissue-specific differences of sRNAs. We also observed the transition of sRNomes during hepatic reprogramming. Knockdown of mesenchymal stem cell-enriched U1-5′ snsRNA promoted hepatic reprogramming. CPA-seq is a powerful tool with high sensitivity and specificity for profiling sRNAs with methylated nucleosides and diverse termini.


2021 ◽  
Vol 22 (7) ◽  
pp. 3674
Author(s):  
Cleonardo Augusto Silva ◽  
Arthur Ribeiro-dos-Santos ◽  
Wanderson Gonçalves Gonçalves ◽  
Pablo Pinto ◽  
Rafael Pompeu Pantoja ◽  
...  

The role of regulatory elements such as small ncRNAs and their mechanisms are poorly understood in infectious diseases. Tuberculosis is one of the oldest infectious diseases of humans and it is still a challenge to prevent and treat. Control of the infection, as well as its diagnosis, are still complex and current treatments used are linked to several side effects. This study aimed to identify possible biomarkers for tuberculosis by applying NGS techniques to obtain global miRNA expression profiles from 22 blood samples of infected patients with tuberculosis (n = 9), their respective healthy physicians (n = 6) and external healthy individuals as controls (n = 7). Samples were run through a pipeline consisting of differential expression, target genes, gene set enrichment and miRNA–gene network analyses. We observed 153 altered miRNAs, among which only three DEmiRNAs (hsa-let-7g-5p, hsa-miR-486-3p and hsa-miR-4732-5p) were found between the investigated patients and their respective physicians. These DEmiRNAs are suggested to play an important role in granuloma regulation and their immune physiopathology. Our results indicate that miRNAs may be involved in immune modulation by regulating gene expression in cells of the immune system. Our findings encourage the application of miRNAs as potential biomarkers for tuberculosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1703
Author(s):  
Nicole Raad ◽  
Hannes Luidalepp ◽  
Michel Fasnacht ◽  
Norbert Polacek

Almost two-thirds of the microbiome’s biomass has been predicted to be in a non-proliferating, and thus dormant, growth state. It is assumed that dormancy goes hand in hand with global downregulation of gene expression. However, it remains largely unknown how bacteria manage to establish this resting phenotype at the molecular level. Recently small non-protein-coding RNAs (sRNAs or ncRNAs) have been suggested to be involved in establishing the non-proliferating state in bacteria. Here, we have deep sequenced the small transcriptome of Escherichia coli in the exponential and stationary phases and analyzed the resulting reads by a novel biocomputational pipeline STARPA (Stable RNA Processing Product Analyzer). Our analysis reveals over 12,000 small transcripts enriched during both growth stages. Differential expression analysis reveals distinct sRNAs enriched in the stationary phase that originate from various genomic regions, including transfer RNA (tRNA) fragments. Furthermore, expression profiling by Northern blot and RT-qPCR analyses confirms the growth phase-dependent expression of several enriched sRNAs. Our study adds to the existing repertoire of bacterial sRNAs and suggests a role for some of these small molecules in establishing and maintaining stationary phase as well as the bacterial stress response. Functional characterization of these detected sRNAs has the potential of unraveling novel regulatory networks central for stationary phase biology.


Author(s):  
Cleonardo Augusto Silva ◽  
Arthur Ribeiro-dos-Santos ◽  
Wanderson Gonçalves Gonçalves ◽  
Pablo Pinto ◽  
Rafael Pompeu Pantoja ◽  
...  

Molecular studies regarding regulatory elements such as small ncRNAs and their mechanisms are poorly understood in infectious diseases. Tuberculosis is one of the oldest infectious diseases of humanity, and it is still a challenge to prevent and treat it. The control of the infection as well as its diagnosis are still complex, and treatments used are linked to several side effects. This study aimed to investigate miRNA’s expression profile to identify possible biomarkers for tuberculosis. We applied NGS techniques to investigate miRNA’s global expression profile from blood samples of infected patients with tuberculosis, their respective healthy physicians, and external healthy individuals as controls. Samples from 22 individuals run through a differential expression, target genes, gene set enrichment, and miRNA-gene network analysis. We observed 153 altered miRNAs, among which, only three DEmiRNAs (hsa-let-7g-5p, hsa-miR-486-3p and hsa-miR-4732-5p) were found between the investigated patients and their respective physicians. These DEmiRNAs are suggested to play an important role in granuloma regulation and their immune physiopathology. Our results propose that miRNAs may be involved in immune modulation, regulating the repertoire of genes expressed in the immune system’s cells. Our findings encourage the application of miRNAs as potential biomarkers for tuberculosis.


2020 ◽  
Vol 20 (10) ◽  
pp. 757-767
Author(s):  
Ravishkumar L. Akshaya ◽  
Muthukumar Rohini ◽  
Nagarajan Selvamurugan

Background: Breast cancer (BC) is the cardinal cause of cancer-related deaths among women across the globe. Our understanding of the molecular mechanisms underlying BC invasion and metastasis remains insufficient. Recent studies provide compelling evidence on the prospective contribution of noncoding RNAs (ncRNAs) and the association of different interactive mechanisms between these ncRNAs with breast carcinogenesis. MicroRNAs (small ncRNAs) and lncRNAs (long ncRNAs) have been explored extensively as classes of ncRNAs in the pathogenesis of several malignancies, including BC. Objective: In this review, we aim to provide a better understanding of the involvement of miRNAs and lncRNAs and their underlying mechanisms in BC development and progression that may assist the development of monitoring biomarkers and therapeutic strategies to effectively combat BC. Conclusion: These ncRNAs play critical roles in cell growth, cell cycle regulation, epithelialmesenchymal transition (EMT), invasion, migration, and apoptosis among others, and were observed to be highly dysregulated in several cancers. The miRNAs and lncRNAs were observed to interact with each other through several mechanisms that governed the expression of their respective targets and could act either as tumor suppressors or as oncogenes, playing a crucial part in breast carcinogenesis.


Author(s):  
Dr. Reshma Venugopal ◽  
Dr. Radhika Manoj Bavle ◽  
Dr. Sudhakara Muniswamappa ◽  
Dr. Soumya Makarla

Non-coding ribonucleic acids (ncRNAs) are a class of RNA molecules that are transcribed but not translated into proteins, but they affect various cellular processes. Around 60% of genes in humans do not code proteins but regulate target gene expression. Presently, a lot of research is carried out on ncRNA involvement in oral squamous cell carcinoma (OSCC) and its precursor lesions termed as oral potentially malignant disorders (OPMDs). They are broadly classified as small ncRNAs (sncRNA) and long ncRNAs (lncRNA). sncRNAs are extensively studied, whereas the divulgence of lncRNAs in OSCCs needs more revelation, hence reviewed in the present article. LncRNAs have a base pair length of more than 200, can form complex structures and influence the gene expression in a multifaceted pattern that attracts interest.


Sign in / Sign up

Export Citation Format

Share Document