The Morphology and Physiological Properties of the Small White Neurones in the Buccal Ganglia of Tritonia Hombergi

1986 ◽  
Vol 122 (1) ◽  
pp. 237-256
Author(s):  
D. A. DORSETT

The two small white (W) cells in the buccal ganglia of Tritonia hombergi can initiate and modulate cyclic activity in the pattern generating neurones which drive feeding activity in the buccal mass. They also make extensive monosynaptic connections with the buccal motoneurones, generating EPSPs on protractor (P) cells, IPSPs on retractor (R) cells, and EIPSPs on the small radula flattener (F) cells. Two F motoneurones receive a chemically mediated, facilitating EPSP from the W cells. Inactive W cells receive weak excitatory feedback from the pattern generating network interneurones (FPG) in phase I of the feeding cycle and also from some F cells. Prolonged depolarization of one W cell recruits the other. When both are active they adopt a patterned burst mode with a common inhibitory input in phase I.

1981 ◽  
Vol 94 (1) ◽  
pp. 95-104
Author(s):  
J. N. SIGGER ◽  
D. A. DORSETT

The buccal ganglia of Philine each contain a group of mechanoreceptors, consisting of 1 large and 3 small cells, with receptive fields in the oesophagus. Synaptic contacts occur between the receptors; the large cell providing an EIPSP input to its contralateral partner and to the two groups of smaller receptors. The small receptors make weak excitatory contacts with both the large receptors. The sensory cells synapse with other buccal motoneurones and interneurones, some of which show periodic activity associated with the feeding movements. Protraction phase neurones are divisible into two groups, one of which receives EPSPs from the receptors, while the other group receives IPSPs. Retraction phase neurones receive a biphasic EIPSP. The receptors provide excitatory synaptic input to a pair of interneurones which ‘gate’ the feeding cycle. A third class of neurones which are not rhythmically active during feeding receive a predominantly inhibitory EIPSP.


1979 ◽  
Vol 79 (1) ◽  
pp. 23-40
Author(s):  
A.G. M. BULLOCH ◽  
D. A. DORSETT

Three phases of activity may be recognized in the buccal mass of Tritonia hombergi during the feeding cycle. These have been termed Protraction, Retraction and Flattening. Each phase is driven by a group of motoneurones along the posterior border of the buccal ganglia. The patterned bursting observed in the motoneurone groups during feeding activity is phased by synaptic inputs which are common to two or more groups. Evidence is presented which indicates these inputs are derived from three unidentified multi-action interneurone sources within each buccal ganglion, and whose action primarily determines the patterned output of the motoneurones. Electrical coupling between between synergistic motoneurones and, in one case, post-inhibitory rebound, contribute to the synchronization of group activity. Proprioceptive input to the motoneurones was not identified, but may project to the interneurones. Some small neurones having synaptic inputs on the motoneurones appropriate to two of the interneurones were found, but require confirmation in this role. The cerebral giant cells synapse on representatives of three motoneurone groups, and also activate the buccal interneurones driving the feeding cycle. The patterned activity of the motoneurones can occur in the absence of cerebral cell activity.


1979 ◽  
Vol 79 (1) ◽  
pp. 7-22
Author(s):  
A.G. M. BULLOCH ◽  
D. A. DORSETT

The anatomy of the buccal mass and the function of nine principal muscle groups involved in the feeding movements, are described for the mollusc Tritonia hombergi. Anatomical and physiological studies on some 40 neurones along the posterior border of the buccal ganglia indicates that many are primary motoneurones to the muscles of the buccal mass. The feeding cycle may be divided into three phases of muscle activity termed Protraction, Retraction and Flattening, which are correlated with the patterned bursting observed in P, R and F motoneurone groups within the motoneurone population. A fourth group of motoneurones are thought to innervate muscles to the outer lips which are active during protraction. The patterned output of impulses in the buccal nerves during feeding cycles confirms that the motor control of the muscle groups may be explained in terms of the sequential activation of the P, R and F cells.


2020 ◽  
Vol 29 (4) ◽  
pp. 2109-2130
Author(s):  
Lauren Bislick

Purpose This study continued Phase I investigation of a modified Phonomotor Treatment (PMT) Program on motor planning in two individuals with apraxia of speech (AOS) and aphasia and, with support from prior work, refined Phase I methodology for treatment intensity and duration, a measure of communicative participation, and the use of effect size benchmarks specific to AOS. Method A single-case experimental design with multiple baselines across behaviors and participants was used to examine acquisition, generalization, and maintenance of treatment effects 8–10 weeks posttreatment. Treatment was distributed 3 days a week, and duration of treatment was specific to each participant (criterion based). Experimental stimuli consisted of target sounds or clusters embedded nonwords and real words, specific to each participants' deficit. Results Findings show improved repetition accuracy for targets in trained nonwords, generalization to targets in untrained nonwords and real words, and maintenance of treatment effects at 10 weeks posttreatment for one participant and more variable outcomes for the other participant. Conclusions Results indicate that a modified version of PMT can promote generalization and maintenance of treatment gains for trained speech targets via a multimodal approach emphasizing repeated exposure and practice. While these results are promising, the frequent co-occurrence of AOS and aphasia warrants a treatment that addresses both motor planning and linguistic deficits. Thus, the application of traditional PMT with participant-specific modifications for AOS embedded into the treatment program may be a more effective approach. Future work will continue to examine and maximize improvements in motor planning, while also treating anomia in aphasia.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2938-2942 ◽  
Author(s):  
BG Gordon ◽  
PI Warkentin ◽  
DD Weisenburger ◽  
JM Vose ◽  
WG Sanger ◽  
...  

Abstract We report nine children with relapsed (n = 8) or high-risk (n = 1) peripheral T-cell lymphoma (PTCL) who underwent autologous (n = 6) or allogeneic (n = 3) bone marrow transplantation (BMT). These children received transplants as part of a prospective phase I/II study of thioTEPA (TT) and total body irradiation (TBI) with escalating doses of VP-16. The median age of these patients at time of BMT was 6.5 years (range 2.5 years to 14 years). Three were transplanted with active disease after failing salvage chemotherapy. Of the other six, one was transplanted in first complete remission (CR) and five in second or subsequent CR. Of these nine patients, eight are free of disease a median of 25 months after BMT (range, 6 to 48 months), with an estimated 2-year relapse-free survival (RFS) of 89%. Six of these eight patients have been followed for 12 or more months after BMT, and in each their current remission exceeds their longest previous remission duration. The toxicity of the TT/TBI +/- VP-16 regimens was significant but manageable, predominantly consisting of severe mucositis. For a comparison, we reviewed retrospective data on the six additional children and adolescents with PTCL who underwent BMT during the 3-year period preceding this phase I/II study. The median age at BMT of these six patients was 19 years (range 15.5 years to 20 years). These patients were prepared for BMT with a variety of other regimens. One had no response to BMT and the other five relapsed at 1.5 to 5 months after BMT (median, 3 months) with an RFS of 0%. Our data suggest that thioTEPA plus TBI, with or without VP-16, is an effective preparative regimen for BMT for young patients with relapsed or high-stage PTCL and leads to prolonged RFS.


1983 ◽  
Vol 218 (1210) ◽  
pp. 95-110 ◽  

(i) Following previous work on the morphological and physiological properties of the two distal joints (J2, J3) of the atenna of the rock lobster Palinurus vulgaris , the mechanical, muscular and proprioceptive organization of the two proximal joints between the antennal segments S1 and S2 (J1) and between S1 and the cephalothorax (J0) have now been studied. (ii) Articulated by two classical condyles, J1 moves in a mediolateral plane. One external rotator muscle (ER) and three internal rotator muscles (IR1, IR2, IR3) subserve its movements. J0 is articulated by two different systems: a classical ventrolateral condyle and a complex sliding system constituted by special cuticular structures on the dorsomedial side of the S1 segment and on the rostrum between the two antennae. J0 moves in the dorsoventral plane by means of a levator muscle (Lm) and a depressor muscle (Dm). A third muscle, the lateral tractor muscle (LTm), associated with J0 and lying obliquely across S1, may modulate the level of friction between the S1 segment and the rostrum. (iii) Proprioception in J1 is achieved by a muscle receptor organ AMCO-J1 (antennal myochordotonal organ for the J1 joint) associating a small accessory muscle (S1.am) located in the proximal part of the S1 segment and a chordotonal organ inserted proximally on the S1.am muscle and distally on the S2 segment. J0 proprioception is ensured by a simple chordotonal organ (CO-J0) located in the anterior part of the cephalothorax. (iv) The S1.am muscle is innervated by three motoneurons characterized by their very small diameters and inducing respectively tonic excitatory postsynaptic potentials, phasic excitatory postsynaptic potentials and inhibitory postsynaptic potentials. Anatomical and physiological observations suggest functional correlation between S1.am and IR1 motor innervation. (v) Mechanical and muscular organization of J0 and J1 are compared with that of the other joints of the antenna. The properties of the AMCO-J1 proprioceptor are discussed in relation to the other muscle receptor organs described in crustaceans.


2000 ◽  
Vol 83 (1) ◽  
pp. 374-392 ◽  
Author(s):  
Evgeni A. Kabotyanski ◽  
Douglas A. Baxter ◽  
Susan J. Cushman ◽  
John H. Byrne

The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the buccal apparatus during feeding. Activity in this CPG is believed to be regulated, in part, by extrinsic serotonergic inputs and by an intrinsic and extrinsic system of putative dopaminergic cells. The present study investigated the roles of dopamine (DA) and serotonin (5-HT) in regulating feeding movements of the buccal apparatus and properties of the underlying neural circuitry. Perfusing a semi-intact head preparation with DA (50 μM) or the metabolic precursor of catecholamines (l-3–4-dihydroxyphenylalanine, DOPA, 250 μM) induced feeding-like movements of the jaws and radula/odontophore. These DA-induced movements were similar to bites in intact animals. Perfusing with 5-HT (5 μM) also induced feeding-like movements, but the 5-HT-induced movements were similar to swallows. In preparations of isolated buccal ganglia, buccal motor programs (BMPs) that represented at least two different aspects of fictive feeding (i.e., ingestion and rejection) could be recorded. Bath application of DA (50 μM) increased the frequency of BMPs, in part, by increasing the number of ingestion-like BMPs. Bath application of 5-HT (5 μM) did not significantly increase the frequency of BMPs nor did it significantly increase the proportion of ingestion-like BMPs being expressed. Many of the cells and synaptic connections within the CPG appeared to be modulated by DA or 5-HT. For example, bath application of DA decreased the excitability of cells B4/5 and B34, which in turn may have contributed to the DA-induced increase in ingestion-like BMPs. In summary, bite-like movements were induced by DA in the semi-intact preparation, and neural correlates of these DA-induced effects were manifest as an increase in ingestion-like BMPs in the isolated ganglia. Swallow-like movements were induced by 5-HT in the semi-intact preparation. Neural correlates of these 5-HT-induced effects were not evident in isolated buccal ganglia, however.


1983 ◽  
Vol 49 (6) ◽  
pp. 1481-1503 ◽  
Author(s):  
B. Jahan-Parwar ◽  
S. M. Fredman

The extrinsic buccal muscles in Aplysia are responsible for the overall protraction and retraction of the buccal mass during feeding. The six pairs of extrinsic muscles are organized into two groups, consisting of three protractors and three retractors. Insights into how the extrinsic muscles are controlled were obtained by examining the organization of the motor neurons that innervated them. The extrinsic buccal muscles are innervated by cerebral ganglion nerves and neurons. All the muscles examined appear to be multiply innervated. Identified neurons in the cerebral B, E, and G clusters were found to be motor neurons for individual extrinsic muscles. Some extrinsic muscles had both excitatory and inhibitory innervation. Two synergistic muscles, the extrinsic ventrolateral protractor (ExVLP) and the extrinsic dorsal protractor (ExDP), had common excitatory innervation by identified neuron E5. Two antagonistic muscles, the ExVLP and the extrinsic ventral retractor (ExVR), also had common innervation. Identified neuron E1 appeared to be an inhibitory motor neuron for the ExVLP but an excitatory motor neuron for the ExVR. Common innervation provides a simple mechanism for coordinating synergistic and antagonistic extrinsic muscles. On the basis of these data, a model for the control of buccal mass protraction and retraction is proposed. Bursting by extrinsic buccal muscles was coordinated with cyclic activity in the intrinsic muscles of the buccal mass. Antagonistic extrinsic muscles burst antiphasically and synergistic extrinsic muscles burst in phase when the buccal mass was fully protracted and exhibited a series of rhythmic contractions. Additionally, cerebral E cluster neurons burst in phase with stereotyped rhythmic buccal motor neuron discharges recorded from buccal nerves. The cerebral E cluster motor neurons were coordinated by common synaptic input. No monosynaptic connections were observed; homologous neurons in each E cluster received synaptic input with similar but not identical timing, indicating that the interneurons that coordinate the homologous motor neurons are synchronized. The source of the rhythm that drives synaptically mediated cerebral extrinsic muscle motor neuron bursting was in the buccal ganglia. Cutting one cerebral-buccal connective eliminated E neuron bursting on that side but had no effect on homologous neurons on the intact side. This suggests that a single oscillator in the buccal ganglia may coordinate both the extrinsic and intrinsic buccal muscles during feeding.


Author(s):  
S. Y. Al-Mohanna ◽  
J. A. Nott ◽  
D. J. W. Lane

INTRODUCTIONIt is apparent, in a review on the decapod hepatopancreas (Gibson & Barker, 1979) that there is some consensus of opinion that the epithelium consists of E-, R-, F- and B-cells and M-cells (Al-Mohanna, Nott & Lane, 1985). Also, it is agreed that the gland produces enzymes and absorbs, digests and stores nutrients and excretes waste material. However, the apportionment of these functions to the different cells and the descriptions of the cytological processes involved are variously explained. Thus, the activity of proteases and amylases has been demonstrated in the secretion produced by the gland but the source of these enzymes is attributed to different cells and various modes of secretion are proposed. Also, no secretion granules of the zymogen type have been seen.There are probably two main reasons for the inconsistent interpretation of the activities of the cells. First, the different stages of the feeding and moult cycles are not taken into account and both these affect the cytology of the gland. Second, some of the functions have been deduced from observations of the fine structure without any experimental treatments to demonstrate more directly the processes involved. In the present work all the animals are taken at the same moult stage and observations are made throughout the feeding cycle. Also, aspects of the function are studied with markers which are administered in the diet and injected into the blood. The activities of hydrolytic enzymes associated with the different epithelial cells have been studied but these will be the subject of a separate publication dealing with the cytochemistry of the digestive processes.


1993 ◽  
Vol 70 (2) ◽  
pp. 492-511 ◽  
Author(s):  
F. K. Samson ◽  
J. C. Clarey ◽  
P. Barone ◽  
T. J. Imig

1. Single-unit recordings were carried out in primary auditory cortex (AI) of barbiturate-anesthetized cats. Neurons, sensitive to sound direction in the horizontal plane (azimuth), were identified by their responses to noise bursts, presented in the free field, that varied in azimuth and sound pressure level (SPL). SPLs typically varied between 0 and 80 dB and were presented at each azimuth that was tested. Each azimuth-sensitive neuron responded well to some SPLs at certain azimuths and did not respond well to any SPL at other azimuths. This report describes AI neurons that were sensitive to the azimuth of monaurally presented noise bursts. 2. Unilateral ear plugging was used to test each azimuth-sensitive neuron's response to monaural stimulation. Ear plugs, produced by injecting a plastic ear mold compound into the concha and ear canal, attenuated sound reaching the tympanic membrane by 25-70 dB. Binaural interactions were inferred by comparing responses obtained under binaural (no plug) and monaural (ear plug) conditions. 3. Of the total sample of 131 azimuth-sensitive cells whose responses to ear plugging were studied, 27 were sensitive to the azimuth of monaurally presented noise bursts. We refer to these as monaural directional (MD) cells, and this report describes their properties. The remainder of the sample consisted of cells that either required binaural stimulation for azimuth sensitivity (63/131), because they were insensitive to azimuth under unilateral ear plug conditions or responded too unreliably to permit detailed conclusions regarding the effect of ear plugging (41/131). 4. Most (25/27) MD cells received either monaural input (MD-E0) or binaural excitatory/inhibitory input (MD-EI), as inferred from ear plugging. Two MD cells showed other characteristics. The contralateral ear was excitatory for 25/27 MD cells. 5. MD-E0 cells (22%, 6/27) were monaural. They were unaffected by unilateral ear plugging, showing that they received excitatory input from one ear, and that stimulation of the other ear was without apparent effect. On the other hand, some monaural cells in AI were insensitive to the azimuth of noise bursts, showing that sensitivity to monaural directional cues is not a property of all monaural cells in AI. 6. MD-EI cells (70%, 19/27) exhibited an increase in responsiveness on the side of the plugged ear, showing that they received excitatory drive from one ear and inhibitory drive from the other. MD-EI cells remained azimuth sensitive with the inhibitory ear plugged, showing that they were sensitive to monaural directional cues at the excitatory ear.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document