scholarly journals A Neuronal Role For a Crustacean Red Pigment Concentrating Hormone-Like Peptide: Neuromodulation of the Pyloric Rhythm in the Crab, Cancer Borealis

1988 ◽  
Vol 135 (1) ◽  
pp. 165-181 ◽  
Author(s):  
MICHAEL P. NUSBAUM ◽  
EVE MARDER

The distribution of red pigment concentrating hormone (RPCH)-like immunoreactivity (RPLI) in the stomatogastric nervous system of the crab, Cancer borealis, was studied using whole-mount immunocytochemistry. RPLI was seen in neuropilar processes in the stomatogastric ganglion (STG), and in somata in the oesophageal ganglion and commissural ganglia. Staining was blocked by preincubating the antiserum with RPCH, as well as with a number of adipokinetic hormones (AKHs) and related peptides. Synthetic RPCH had strong actions on the pyloric rhythm of the isolated STG. Bath applications of RPCH (10−9-10−6moll−1) increased the cycle frequency in preparations displaying slow pyloric rhythms, and initiated rhythmic pyloric activity in silent preparations. In the presence of tetrodotoxin (TTX), RPCH evoked rhythmic non-impulse-mediated alternations in membrane potential in the lateral pyloric and pyloric dilator motor neurones. The effects of RPCH were compared to those of a series of AKHs which resemble RPCH structurally. The immunocytochemical and physiological data together suggest that RPCH or a similar molecule is a neurally released modulator of the STG.

2004 ◽  
Vol 91 (1) ◽  
pp. 78-91 ◽  
Author(s):  
Mark P. Beenhakker ◽  
Dawn M. Blitz ◽  
Michael P. Nusbaum

Sensory neurons enable neural circuits to generate behaviors appropriate for the current environmental situation. Here, we characterize the actions of a population (about 60) of bilaterally symmetric bipolar neurons identified within the inner wall of the cardiac gutter, a foregut structure in the crab Cancer borealis. These neurons, called the ventral cardiac neurons (VCNs), project their axons through the crab stomatogastric nervous system to influence neural circuits associated with feeding. Brief pressure application to the cardiac gutter transiently modulated the filtering motor pattern (pyloric rhythm) generated by the pyloric circuit within the stomatogastric ganglion (STG). This modulation included an increased speed of the pyloric rhythm and a concomitant decrease in the activity of the lateral pyloric neuron. Furthermore, 2 min of rhythmic pressure application to the cardiac gutter elicited a chewing motor pattern (gastric mill rhythm) generated by the gastric mill circuit in the STG that persisted for ≤30 min. These sensory actions on the pyloric and gastric mill circuits were mimicked by either ventral cardiac nerve or dorsal posterior esophageal nerve stimulation. VCN actions on the STG circuits required the activation of projection neurons in the commissural ganglia. A subset of the VCN actions on these projection neurons appeared to be direct and cholinergic. We propose that the VCN neurons are mechanoreceptors that are activated when food stored in the foregut applies an outward force, leading to the long-lasting activation of projection neurons required to initiate chewing and modify the filtering of chewed food.


1994 ◽  
Vol 194 (1) ◽  
pp. 195-208 ◽  
Author(s):  
P Skiebe ◽  
H Schneider

The effects of four Diploptera punctata allatostatin peptides on the stomatogastric nervous system of the crab Cancer borealis were studied. All of the peptides had similar actions on the activity of neurons involved in rhythmic movements of the pyloric region of the stomach, decreasing the frequency of the pyloric rhythm in a dose-dependent manner. Diploptera allatostatin 3 (D-AST-3) was slightly more effective than the others. The absolute change in the frequency of the pyloric rhythm depended on the starting frequency, demonstrating that the effect of D-AST-3 depends on the preceding physiological state of the preparation. The largest decreases were observed when the starting frequency was slower than 0.8 Hz. Whole-mount immunocytochemistry with anti-Diploptera allatostatin 1 antibodies demonstrated the presence of allatostatin-like peptides in the paired commissural ganglia, the unpaired oesophageal ganglion and the stomatogastric ganglion, and in their connecting and motor nerves. Dense processes were labeled in the stomatogastric ganglion, 12-19 cell bodies and neuropil staining were found in each commissural ganglion, two cell bodies were stained in the oesophageal ganglion and two pairs of cell bodies, the gastropyloric receptor neurons, were stained in peripheral nerves.


1989 ◽  
Vol 61 (4) ◽  
pp. 833-844 ◽  
Author(s):  
P. S. Dickinson ◽  
E. Marder

1. The cardiac sac motor pattern consists of slow and irregular impulse bursts in the motor neurons [cardiac sac dilator 1 and 2 (CD1 and CD2)] that innervate the dilator muscles of the cardiac sac region of the crustacean foregut. 2. The effects of the peptides, proctolin and red pigment-concentrating hormone (RPCH), on the cardiac sac motor patterns produced by in vitro preparations of the combined stomatogastric nervous system [the stomatogastric ganglion (STG), the paired commissural ganglia (CGs), and the oesophageal ganglion (OG)] were studied. 3. Bath applications of either RPCH or proctolin activated the cardiac sac motor pattern when this motor pattern was not already active and increased the frequency of the cardiac sac motor pattern in slowly active preparations. 4. The somata of CD1 and CD2 are located in the esophageal and stomatogastric ganglia, respectively. Both neurons project to all four of the ganglia of the stomatogastric nervous system. RPCH elicited cardiac sac motor patterns when applied to any region of the stomatogastric nervous system, suggesting a distributed pattern generating network with multiple sites of modulation. 5. The anterior median (AM) neuron innervates the constrictor muscles of the cardiac sac. The AM usually functions as a part of the gastric mill pattern generator. However, when the cardiac sac is activated by RPCH applied to the stomatogastric ganglion, the AM neuron becomes active in antiphase with the cardiac sac dilator bursts. This converts the cardiac sac motor pattern from a one-phase rhythm to a two-phase rhythm. 6. These data show that a neuropeptide can cause a neuronal element to switch from being solely a component of one neuronal circuit to functioning in a second one as well. This example shows that peptidergic "reconfiguration" of neuronal networks can produce substantial changes in the behavior of associated neurons.


1995 ◽  
Vol 354 (2) ◽  
pp. 282-294 ◽  
Author(s):  
Dawn M. Blitz ◽  
Andrew E. Christie ◽  
Eve Marder ◽  
Michael P. Nusbaum

2019 ◽  
Vol 122 (4) ◽  
pp. 1623-1633
Author(s):  
Diana Martinez ◽  
Joseph M. Santin ◽  
David Schulz ◽  
Farzan Nadim

Many neurons receive synchronous input from heterogeneous presynaptic neurons with distinct properties. An instructive example is the crustacean stomatogastric pyloric circuit pacemaker group, consisting of the anterior burster (AB) and pyloric dilator (PD) neurons, which are active synchronously and exert a combined synaptic action on most pyloric follower neurons. Previous studies in lobster have indicated that AB is glutamatergic, whereas PD is cholinergic. However, although the stomatogastric system of the crab Cancer borealis has become a preferred system for exploration of cellular and synaptic basis of circuit dynamics, the pacemaker synaptic output has not been carefully analyzed in this species. We examined the synaptic properties of these neurons using a combination of single-cell mRNA analysis, electrophysiology, and pharmacology. The crab PD neuron expresses high levels of choline acetyltransferase and the vesicular acetylcholine transporter mRNAs, hallmarks of cholinergic neurons. In contrast, the AB neuron expresses neither cholinergic marker but expresses high levels of vesicular glutamate transporter mRNA, consistent with a glutamatergic phenotype. Notably, in the combined synapses to follower neurons, 70–75% of the total current was blocked by putative glutamatergic blockers, but short-term synaptic plasticity remained unchanged, and although the total pacemaker current in two follower neuron types was different, this difference did not contribute to the phasing of the follower neurons. These findings provide a guide for similar explorations of heterogeneous synaptic connections in other systems and a baseline in this system for the exploration of the differential influence of neuromodulators. NEW & NOTEWORTHY The pacemaker-driven pyloric circuit of the Jonah crab stomatogastric nervous system is a well-studied model system for exploring circuit dynamics and neuromodulation, yet the understanding of the synaptic properties of the two pacemaker neuron types is based on older analyses in other species. We use single-cell PCR and electrophysiology to explore the neurotransmitters used by the pacemaker neurons and their distinct contribution to the combined synaptic potentials.


Author(s):  
Davis Grininger ◽  
John T. Birmingham

Neuromodulatory actions that change the properties of proprioceptors or the muscle movements to which they respond necessarily affect the feedback provided to the central network. Here we further characterize the responses of the gastropyloric receptor 1 (GPR1) and gastropyloric receptor 2 (GPR2) neurons in the stomatogastric nervous system of the crab Cancer borealis to movements and contractions of muscles, and we report how neuromodulation modifies those responses. We observed that the GPR1 response to contractions of the gastric mill 4 (gm4) muscle was absent, or nearly so, when the neuron was quiescent but robust when it was spontaneously active. We also found that the effects of four neuromodulatory substances (GABA, serotonin, proctolin and TNRNFLRFamide) on the GPR1 response to muscle stretch were similar to those previously reported for GPR2. Finally, we showed that an excitatory action on gm4 due to proctolin combined with an inhibitory action on GPR2 due to GABA can allow for larger muscle contractions without increased proprioceptive feedback.


1997 ◽  
Vol 200 (24) ◽  
pp. 3221-3233 ◽  
Author(s):  
A J Tierney ◽  
J Blanck ◽  
J Mercier

Whole-mount immunocytochemistry was used to map the location of FMRFamide-like peptides in the crayfish (Procambarus clarkii) stomatogastric nervous system. This system contains the pyloric and gastric mill central pattern generators, which receive modulatory inputs from projection neurons with somata located primarily in other ganglia of the stomatogastric nervous system. Our studies revealed stained somata in the commissural and esophageal ganglia. A pair of stained somata was located in the inferior ventricular nerve, and another pair of somata was located in the stomatogastric nerve where it is joined by the two superior esophageal nerves. The stomatogastric ganglion contained no stained somata, but the neuropil was brightly stained and 2-4 axons projected laterally in small nerves directly from the ganglion. These results indicate that FMRFamide or related peptides may act as neuromodulators in the crayfish stomatogastric nervous system. To test this hypothesis, we studied the effects of FMRFamide and four related peptides (DF2, NF1, F1 and LMS) on the pyloric motor pattern. DF2, NF1 and F1 all excited certain pyloric cells, especially the lateral pyloric (LP) and ventricular dilator (VD) neurons, and enhanced pyloric cycling frequency in most actively rhythmic preparations. FMRFamide had no detectable effects on pyloric cells, and LMS had inhibitory effects, causing disruption of the pyloric rhythm in actively cycling preparations and reducing tonic activity in non-rhythmic preparations.


2000 ◽  
Vol 203 (14) ◽  
pp. 2075-2092 ◽  
Author(s):  
A.M. Swensen ◽  
J. Golowasch ◽  
A.E. Christie ◽  
M.J. Coleman ◽  
M.P. Nusbaum ◽  
...  

The multifunctional neural circuits in the crustacean stomatogastric ganglion (STG) are influenced by many small-molecule transmitters and neuropeptides that are co-localized in identified projection neurons to the STG. We describe the pattern of gamma-aminobutyric acid (GABA) immunoreactivity in the stomatogastric nervous system of the crab Cancer borealis and demonstrate biochemically the presence of authentic GABA in C. borealis. No STG somata show GABA immunoreactivity but, within the stomatogastric nervous system, GABA immunoreactivity co-localizes with several neuropeptides in two identified projection neurons, the modulatory proctolin neuron (MPN) and modulatory commissural neuron 1 (MCN1). To determine which actions of these neurons are evoked by GABA, it is necessary to determine the physiological actions of GABA on STG neurons. We therefore characterized the response of each type of STG neuron to focally applied GABA. All STG neurons responded to GABA. In some neurons, GABA evoked a picrotoxin-sensitive depolarizing, excitatory response with a reversal potential of approximately −40 mV. This response was also activated by muscimol. In many STG neurons, GABA evoked inhibitory responses with both K(+)- and Cl(−)-dependent components. Muscimol and beta-guanidinopropionic acid weakly activated the inhibitory responses, but many other drugs, including bicuculline and phaclofen, that act on vertebrate GABA receptors were not effective. In summary, GABA is found in projection neurons to the crab STG and can evoke both excitatory and inhibitory actions on STG neurons.


2015 ◽  
Vol 114 (3) ◽  
pp. 1677-1692 ◽  
Author(s):  
Albert W. Hamood ◽  
Eve Marder

For decades, the episodic gastric rhythm of the crustacean stomatogastric nervous system (STNS) has served as an important model system for understanding the generation of rhythmic motor behaviors. Here we quantitatively describe many features of the gastric rhythm of the crab Cancer borealis under several conditions. First, we analyzed spontaneous gastric rhythms produced by freshly dissected preparations of the STNS, including the cycle frequency and phase relationships among gastric units. We find that phase is relatively conserved across frequency, similar to the pyloric rhythm. We also describe relationships between these two rhythms, including a significant gastric/pyloric frequency correlation. We then performed continuous, days-long extracellular recordings of gastric activity from preparations of the STNS in which neuromodulatory inputs to the stomatogastric ganglion were left intact and also from preparations in which these modulatory inputs were cut (decentralization). This allowed us to provide quantitative descriptions of variability and phase conservation within preparations across time. For intact preparations, gastric activity was more variable than pyloric activity but remained relatively stable across 4–6 days, and many significant correlations were found between phase and frequency within animals. Decentralized preparations displayed fewer episodes of gastric activity, with altered phase relationships, lower frequencies, and reduced coordination both among gastric units and between the gastric and pyloric rhythms. Together, these results provide insight into the role of neuromodulation in episodic pattern generation and the extent of animal-to-animal variability in features of spontaneously occurring gastric rhythms.


Sign in / Sign up

Export Citation Format

Share Document