scholarly journals Cancer Borealis Stomatogastric Nervous System Dissection

Author(s):  
Gabrielle J. Gutierrez ◽  
Rachel G. Grashow
1995 ◽  
Vol 354 (2) ◽  
pp. 282-294 ◽  
Author(s):  
Dawn M. Blitz ◽  
Andrew E. Christie ◽  
Eve Marder ◽  
Michael P. Nusbaum

Author(s):  
Davis Grininger ◽  
John T. Birmingham

Neuromodulatory actions that change the properties of proprioceptors or the muscle movements to which they respond necessarily affect the feedback provided to the central network. Here we further characterize the responses of the gastropyloric receptor 1 (GPR1) and gastropyloric receptor 2 (GPR2) neurons in the stomatogastric nervous system of the crab Cancer borealis to movements and contractions of muscles, and we report how neuromodulation modifies those responses. We observed that the GPR1 response to contractions of the gastric mill 4 (gm4) muscle was absent, or nearly so, when the neuron was quiescent but robust when it was spontaneously active. We also found that the effects of four neuromodulatory substances (GABA, serotonin, proctolin and TNRNFLRFamide) on the GPR1 response to muscle stretch were similar to those previously reported for GPR2. Finally, we showed that an excitatory action on gm4 due to proctolin combined with an inhibitory action on GPR2 due to GABA can allow for larger muscle contractions without increased proprioceptive feedback.


2000 ◽  
Vol 203 (14) ◽  
pp. 2075-2092 ◽  
Author(s):  
A.M. Swensen ◽  
J. Golowasch ◽  
A.E. Christie ◽  
M.J. Coleman ◽  
M.P. Nusbaum ◽  
...  

The multifunctional neural circuits in the crustacean stomatogastric ganglion (STG) are influenced by many small-molecule transmitters and neuropeptides that are co-localized in identified projection neurons to the STG. We describe the pattern of gamma-aminobutyric acid (GABA) immunoreactivity in the stomatogastric nervous system of the crab Cancer borealis and demonstrate biochemically the presence of authentic GABA in C. borealis. No STG somata show GABA immunoreactivity but, within the stomatogastric nervous system, GABA immunoreactivity co-localizes with several neuropeptides in two identified projection neurons, the modulatory proctolin neuron (MPN) and modulatory commissural neuron 1 (MCN1). To determine which actions of these neurons are evoked by GABA, it is necessary to determine the physiological actions of GABA on STG neurons. We therefore characterized the response of each type of STG neuron to focally applied GABA. All STG neurons responded to GABA. In some neurons, GABA evoked a picrotoxin-sensitive depolarizing, excitatory response with a reversal potential of approximately −40 mV. This response was also activated by muscimol. In many STG neurons, GABA evoked inhibitory responses with both K(+)- and Cl(−)-dependent components. Muscimol and beta-guanidinopropionic acid weakly activated the inhibitory responses, but many other drugs, including bicuculline and phaclofen, that act on vertebrate GABA receptors were not effective. In summary, GABA is found in projection neurons to the crab STG and can evoke both excitatory and inhibitory actions on STG neurons.


2004 ◽  
Vol 91 (1) ◽  
pp. 78-91 ◽  
Author(s):  
Mark P. Beenhakker ◽  
Dawn M. Blitz ◽  
Michael P. Nusbaum

Sensory neurons enable neural circuits to generate behaviors appropriate for the current environmental situation. Here, we characterize the actions of a population (about 60) of bilaterally symmetric bipolar neurons identified within the inner wall of the cardiac gutter, a foregut structure in the crab Cancer borealis. These neurons, called the ventral cardiac neurons (VCNs), project their axons through the crab stomatogastric nervous system to influence neural circuits associated with feeding. Brief pressure application to the cardiac gutter transiently modulated the filtering motor pattern (pyloric rhythm) generated by the pyloric circuit within the stomatogastric ganglion (STG). This modulation included an increased speed of the pyloric rhythm and a concomitant decrease in the activity of the lateral pyloric neuron. Furthermore, 2 min of rhythmic pressure application to the cardiac gutter elicited a chewing motor pattern (gastric mill rhythm) generated by the gastric mill circuit in the STG that persisted for ≤30 min. These sensory actions on the pyloric and gastric mill circuits were mimicked by either ventral cardiac nerve or dorsal posterior esophageal nerve stimulation. VCN actions on the STG circuits required the activation of projection neurons in the commissural ganglia. A subset of the VCN actions on these projection neurons appeared to be direct and cholinergic. We propose that the VCN neurons are mechanoreceptors that are activated when food stored in the foregut applies an outward force, leading to the long-lasting activation of projection neurons required to initiate chewing and modify the filtering of chewed food.


2008 ◽  
Vol 99 (6) ◽  
pp. 3104-3122 ◽  
Author(s):  
Kristina J. Rehm ◽  
Adam L. Taylor ◽  
Stefan R. Pulver ◽  
Eve Marder

The stomatogastric nervous system (STNS) of the embryonic lobster is rhythmically active prior to hatching, before the network is needed for feeding. In the adult lobster, two rhythms are typically observed: the slow gastric mill rhythm and the more rapid pyloric rhythm. In the embryo, rhythmic activity in both embryonic gastric mill and pyloric neurons occurs at a similar frequency, which is slightly slower than the adult pyloric frequency. However, embryonic motor patterns are highly irregular, making traditional burst quantification difficult. Consequently, we used spectral analysis to analyze long stretches of simultaneous recordings from muscles innervated by gastric and pyloric neurons in the embryo. This analysis revealed that embryonic gastric mill neurons intermittently produced pauses and periods of slower activity not seen in the recordings of the output from embryonic pyloric neurons. The slow activity in the embryonic gastric mill neurons increased in response to the exogenous application of Cancer borealis tachykinin-related peptide 1a (CabTRP), a modulatory peptide that appears in the inputs to the stomatogastric ganglion (STG) late in larval development. These results suggest that the STG network can express adult-like rhythmic behavior before fully differentiated adult motor patterns are observed, and that the maturation of the neuromodulatory inputs is likely to play a role in the eventual establishment of the adult motor patterns.


2017 ◽  
Vol 118 (3) ◽  
pp. 1749-1761 ◽  
Author(s):  
Kawasi M. Lett ◽  
Veronica J. Garcia ◽  
Simone Temporal ◽  
Dirk Bucher ◽  
David J. Schulz

We studied the changes in sensitivity to a peptide modulator, crustacean cardioactive peptide (CCAP), as a response to loss of endogenous modulation in the stomatogastric ganglion (STG) of the crab Cancer borealis. Our data demonstrate that removal of endogenous modulation for 24 h increases the response of the lateral pyloric (LP) neuron of the STG to exogenously applied CCAP. Increased responsiveness is accompanied by increases in CCAP receptor (CCAPr) mRNA levels in LP neurons, requires de novo protein synthesis, and can be prevented by coincubation for the 24-h period with exogenous CCAP. These results suggest that there is a direct feedback from loss of CCAP signaling to the production of CCAPr that increases subsequent response to the ligand. However, we also demonstrate that the modulator-evoked membrane current ( IMI) activated by CCAP is greater in magnitude after combined loss of endogenous modulation and activity compared with removal of just hormonal modulation. These results suggest that both receptor expression and an increase in the target conductance of the CCAP G protein-coupled receptor are involved in the increased response to exogenous hormone exposure following experimental loss of modulation in the STG. NEW & NOTEWORTHY The nervous system shows a tremendous amount of plasticity. More recently there has been an appreciation for compensatory actions that stabilize output in the face of perturbations to normal activity. In this study we demonstrate that neurons of the crustacean stomatogastric ganglion generate apparent compensatory responses to loss of peptide neuromodulation, adding to the repertoire of mechanisms by which the stomatogastric nervous system can regulate and stabilize its own output.


2014 ◽  
Vol 28 (22) ◽  
pp. 2437-2444 ◽  
Author(s):  
Ruibing Chen ◽  
Chuanzi Ouyang ◽  
Mingming Xiao ◽  
Lingjun Li

1993 ◽  
Vol 181 (1) ◽  
pp. 1-26 ◽  
Author(s):  
J. M. Weimann ◽  
E. Marder ◽  
B. Evans ◽  
R. L. Calabrese

TNRNFLRFamide was isolated and sequenced from the stomatogastric nervous system of the crab Cancer borealis by reverse-phase high performance liquid chromatography followed by automated Edman degradation. An SDRNFLRFamide-like peptide that exactly co-migrated with SDRNFLRFamide was also observed. The effects of TNRNFLRFamide and SDRNFLRFamide on the gastric and pyloric rhythms of the stomatogastric nervous system of the crab Cancer borealis were studied. Both peptides activated pyloric rhythms in quiescent preparations in a dose-dependent manner with a threshold between 10(−11) and 10(−10) mol l-1. Both peptides increased the pyloric rhythm frequency of preparations showing moderate activity levels and had relatively little effect on preparations that showed strong pyloric rhythms prior to peptide application. Both peptides evoked gastric mill activity in preparations without existing gastric rhythms. The activation of the gastric rhythm is associated with activation of oscillatory properties in the dorsal gastric neurone. The induction of gastric rhythms by these peptides was accompanied by switches from pyloric-timed activity to gastric-timed activity by several stomatogastric ganglion neurones. Application of these peptides provides direct experimental control of circuit modification in the stomatogastric nervous system.


1995 ◽  
Vol 198 (1) ◽  
pp. 263-271 ◽  
Author(s):  
A E Christie ◽  
D Baldwin ◽  
G Turrigiano ◽  
K Graubard ◽  
E Marder

Three anti-cholecystokinin antibodies were used to label the stomatogastric nervous system of the crab Cancer borealis. Labeled tissues were examined as whole mounts using laser scanning confocal microscopy. Although each of the anti-cholecystokinin antibodies labeled a variety of structures within the stomatogastric nervous system (including somata, fibers and neuropil), the pattern of labeling produced by each antibody was distinct. These results indicate that there is a family of cholecystokinin-like molecules that are differentially distributed among a subpopulation of the neurons in the stomatogastric nervous system of Cancer borealis.


2011 ◽  
Vol 519 (13) ◽  
pp. 2658-2676 ◽  
Author(s):  
Theresa M. Szabo ◽  
Ruibing Chen ◽  
Marie L. Goeritz ◽  
Ryan T. Maloney ◽  
Lamont S. Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document