cancer borealis
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 27)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 545 ◽  
pp. 151642
Author(s):  
Anna N. Dorrance ◽  
Jason S. Goldstein ◽  
Joshua T. Carloni ◽  
Benjamin C. Gutzler ◽  
Winsor H. Watson

2021 ◽  
Author(s):  
Carola Städele ◽  
Wolfgang Stein

Acute temperature changes can disrupt neuronal activity and coordination with severe consequences for animal behavior and survival. Nonetheless, two rhythmic neuronal circuits in the crustacean stomatogastric ganglion (STG) and their coordination are maintained across a broad temperature range. However, it remains unclear how this temperature robustness is achieved. Here, we dissociate temperature effects on the rhythm generating circuits from those of upstream ganglia. We demonstrate that heat-activated factors extrinsic to the rhythm generators are essential to the slow gastric mill rhythm's temperature robustness and contribute to the temperature response of the fast pyloric rhythm. The gastric mill rhythm crashed when only the STG circuits were heated. It could be restored when upstream ganglia were heated in addition, and the activity of the peptidergic modulatory projection neuron (MCN1) increased. Correspondingly, MCN1's neuropeptide transmitter stabilized the rhythm and maintained it over a broad temperature range. Extrinsic neuromodulation is thus essential for the oscillatory circuits in the STG and enables neural circuits to maintain function in temperature-compromised conditions. In contrast, integer coupling between pyloric and gastric mill rhythms was independent of whether extrinsic inputs and STG pattern generators were temperature-matched or not, demonstrating that the temperature robustness of the coupling is enabled by properties intrinsic to the rhythm generators. However, at near-crash temperature, integer coupling was maintained only in some animals but was absent in others. This was true despite regular rhythmic activity in all animals, supporting that degenerate circuit properties result in idiosyncratic responses to environ-mental challenges.


Author(s):  
Aaron P. Cook ◽  
Michael P. Nusbaum

Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male Cancer borealis crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ('unfed' hemolymph) or fed 15 min - 2 h before hemolymph removal ('fed' hemolymph). After feeding, the first significant foregut emptying occurred >1 h later and complete emptying required ≥6 h. We applied the unfed or fed hemolymph to the stomatogastric ganglion (STG) in an isolated STNS preparation from a separate, unfed crab to determine its influence on the VCN (ventral cardiac neuron)-triggered gastric mill (chewing)- and pyloric (filtering of chewed food) rhythms. Unfed hemolymph had little influence on these rhythms, but fed hemolymph from each examined time-point (15 min, 1- or 2 h post-feeding) slowed one or both rhythms without weakening circuit neuron activity. There were also distinct parameter changes associated with each time-point. One change unique to the 1 h time-point (i.e. reduced activity of one circuit neuron during the transition from the gastric mill retraction to protraction phase) suggested the fed hemolymph also enhanced the influence of a projection neuron which innervates the STG from a ganglion isolated from the applied hemolymph. Hemolymph thus provides a feeding state-dependent modulation of the two feeding-related motor patterns in the C. borealis STG.


2021 ◽  
Author(s):  
Michael Deistler ◽  
Jakob H Macke ◽  
Pedro J Goncalves

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic conductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints, such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible conductances? Here, we investigate how metabolic cost affects the parameters of neural circuits with similar activity in a model of the pyloric network of the crab Cancer borealis. We use a novel machine learning method to identify a range of network models that can generate activity patterns matching experimental data. We find that neural circuits can consume largely different amounts of energy despite similar circuit activity. We then study how circuit parameters get constrained by minimizing energy consumption and identify circuit parameters that might be subject to metabolic tuning. Finally, we investigate the interaction between metabolic cost and temperature robustness. We show that metabolic cost can vary across temperatures, but that robustness to temperature changes does not necessarily incur an increased metabolic cost. Our analyses show that, despite metabolic efficiency and temperature robustness constraining circuit parameters, neural systems can generate functional, efficient, and robust network activity with widely disparate sets of conductances.


Author(s):  
Davis Grininger ◽  
John T. Birmingham

Neuromodulatory actions that change the properties of proprioceptors or the muscle movements to which they respond necessarily affect the feedback provided to the central network. Here we further characterize the responses of the gastropyloric receptor 1 (GPR1) and gastropyloric receptor 2 (GPR2) neurons in the stomatogastric nervous system of the crab Cancer borealis to movements and contractions of muscles, and we report how neuromodulation modifies those responses. We observed that the GPR1 response to contractions of the gastric mill 4 (gm4) muscle was absent, or nearly so, when the neuron was quiescent but robust when it was spontaneously active. We also found that the effects of four neuromodulatory substances (GABA, serotonin, proctolin and TNRNFLRFamide) on the GPR1 response to muscle stretch were similar to those previously reported for GPR2. Finally, we showed that an excitatory action on gm4 due to proctolin combined with an inhibitory action on GPR2 due to GABA can allow for larger muscle contractions without increased proprioceptive feedback.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daniel Powell ◽  
Sara A Haddad ◽  
Srinivas Gorur-Shandilya ◽  
Eve Marder

Coupled oscillatory circuits are ubiquitous in nervous systems. Given that most biological processes are temperature-sensitive, it is remarkable that the neuronal circuits of poikilothermic animals can maintain coupling across a wide range of temperatures. Within the stomatogastric ganglion (STG) of the crab, Cancer borealis, the fast pyloric rhythm (~1 Hz) and the slow gastric mill rhythm (~0.1 Hz) are precisely coordinated at ~11°C such that there is an integer number of pyloric cycles per gastric mill cycle (integer coupling). Upon increasing temperature from 7°C to 23°C, both oscillators showed similar temperature-dependent increases in cycle frequency, and integer coupling between the circuits was conserved. Thus, although both rhythms show temperature-dependent changes in rhythm frequency, the processes that couple these circuits maintain their coordination over a wide range of temperatures. Such robustness to temperature changes could be part of a toolbox of processes that enables neural circuits to maintain function despite global perturbations.


2021 ◽  
Vol 12 (4) ◽  
pp. 782-798
Author(s):  
Kellen DeLaney ◽  
Mengzhou Hu ◽  
Tessa Hellenbrand ◽  
Patsy S. Dickinson ◽  
Michael P. Nusbaum ◽  
...  

2021 ◽  
Vol 302 ◽  
pp. 113688
Author(s):  
Amanda N. Rainey ◽  
Stephanie M. Fukui ◽  
Katie Mark ◽  
Hailey M. King ◽  
Dawn M. Blitz

Sign in / Sign up

Export Citation Format

Share Document