commissural neuron
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 2)

2020 ◽  
Vol 223 (20) ◽  
pp. jeb228114
Author(s):  
Gabriel F. Colton ◽  
Aaron P. Cook ◽  
Michael P. Nusbaum

ABSTRACTNeuronal inputs to microcircuits are often present as multiple copies of apparently equivalent neurons. Thus far, however, little is known regarding the relative influence on microcircuit output of activating all or only some copies of such an input. We examine this issue in the crab (Cancer borealis) stomatogastric ganglion, where the gastric mill (chewing) microcircuit is activated by modulatory commissural neuron 1 (MCN1), a bilaterally paired modulatory projection neuron. Both MCN1s contain the same co-transmitters, influence the same gastric mill microcircuit neurons, can drive the biphasic gastric mill rhythm, and are co-activated by all identified MCN1-activating pathways. Here, we determine whether the gastric mill microcircuit response is equivalent when stimulating one or both MCN1s under conditions where the pair are matched to collectively fire at the same overall rate and pattern as single MCN1 stimulation. The dual MCN1 stimulations elicited more consistently coordinated rhythms, and these rhythms exhibited longer phases and cycle periods. These different outcomes from single and dual MCN1 stimulation may have resulted from the relatively modest, and equivalent, firing rate of the gastric mill neuron LG (lateral gastric) during each matched set of stimulations. The LG neuron-mediated, ionotropic inhibition of the MCN1 axon terminals is the trigger for the transition from the retraction to protraction phase. This LG neuron influence on MCN1 was more effective during the dual stimulations, where each MCN1 firing rate was half that occurring during the matched single stimulations. Thus, equivalent individual- and co-activation of a class of modulatory projection neurons does not necessarily drive equivalent microcircuit output.


2019 ◽  
Vol 527 (18) ◽  
pp. 2948-2972 ◽  
Author(s):  
Alastair J. Tulloch ◽  
Shaun Teo ◽  
Brigett V. Carvajal ◽  
Marc Tessier‐Lavigne ◽  
Alexander Jaworski

2019 ◽  
Vol 121 (3) ◽  
pp. 950-972 ◽  
Author(s):  
Dawn M. Blitz ◽  
Andrew E. Christie ◽  
Aaron P. Cook ◽  
Patsy S. Dickinson ◽  
Michael P. Nusbaum

Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.


2018 ◽  
Author(s):  
Jessica A. Haley ◽  
David Hampton ◽  
Eve Marder

AbstractAnimals and their neuronal circuits must maintain function despite significant environmental fluctuations. The crab, Cancer borealis, experiences daily changes in ocean temperature and pH. Here, we describe the effects of extreme changes in extracellular pH – from pH 5.5 to 10.4 – on two central pattern generating networks, the stomatogastric and cardiac ganglia of C. borealis. Given that the physiological properties of ion channels are known to be sensitive to pH within the range tested, it is surprising that these rhythms generally remained robust from pH 6.1 to pH 8.8. Unexpectedly, the stomatogastric ganglion was more sensitive to acid while the cardiac ganglion was more sensitive to base. Considerable animal-to-animal variability was likely a consequence of similar network performance arising from variable sets of underlying conductances. Together, these results illustrate the potential difficulty in generalizing the effects of environmental perturbation across circuits, even within the same animal.AbbreviationsSTGstomatogastric ganglionCGcardiac ganglionCPGcentral pattern generatorABAnterior BursterPDPyloric DilatorLPLateral PyloricPYPyloricSCSmall CellLCLarge Celllvnlateral ventricular nerveANOVAanalysis of variancePTXpicrotoxinIPSPinhibitory post-synaptic potentialLGLateral GastricMGMedial GastricLPGLateral Posterior GastricGMGastric MillDGDorsal GastricAMAnterior MedianInt1Interneuron 1mvnmedial ventricular nervedgndorsal gastric nervelgnlateral gastric nerveioninferior oesophageal nerveICInferior CardiacVDVentricular DilatorMCN1Modulatory Commissural Neuron 1VCNVentral Cardiac NeuronCPN2Commissural Projection Neuron 2CoGcommissural ganglionKDEkernel density estimateIQRinterquartile rangeCIconfidence interval


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0159405 ◽  
Author(s):  
Benjamin Rappaz ◽  
Karen Lai Wing Sun ◽  
James P. Correia ◽  
Paul W. Wiseman ◽  
Timothy E. Kennedy

2008 ◽  
Vol 105 (38) ◽  
pp. 14465-14470 ◽  
Author(s):  
C. Furne ◽  
N. Rama ◽  
V. Corset ◽  
A. Chedotal ◽  
P. Mehlen

2003 ◽  
Vol 23 (6) ◽  
pp. 1987-1991 ◽  
Author(s):  
Rie Saba ◽  
Norio Nakatsuji ◽  
Tetsuichiro Saito

2000 ◽  
Vol 203 (14) ◽  
pp. 2075-2092 ◽  
Author(s):  
A.M. Swensen ◽  
J. Golowasch ◽  
A.E. Christie ◽  
M.J. Coleman ◽  
M.P. Nusbaum ◽  
...  

The multifunctional neural circuits in the crustacean stomatogastric ganglion (STG) are influenced by many small-molecule transmitters and neuropeptides that are co-localized in identified projection neurons to the STG. We describe the pattern of gamma-aminobutyric acid (GABA) immunoreactivity in the stomatogastric nervous system of the crab Cancer borealis and demonstrate biochemically the presence of authentic GABA in C. borealis. No STG somata show GABA immunoreactivity but, within the stomatogastric nervous system, GABA immunoreactivity co-localizes with several neuropeptides in two identified projection neurons, the modulatory proctolin neuron (MPN) and modulatory commissural neuron 1 (MCN1). To determine which actions of these neurons are evoked by GABA, it is necessary to determine the physiological actions of GABA on STG neurons. We therefore characterized the response of each type of STG neuron to focally applied GABA. All STG neurons responded to GABA. In some neurons, GABA evoked a picrotoxin-sensitive depolarizing, excitatory response with a reversal potential of approximately −40 mV. This response was also activated by muscimol. In many STG neurons, GABA evoked inhibitory responses with both K(+)- and Cl(−)-dependent components. Muscimol and beta-guanidinopropionic acid weakly activated the inhibitory responses, but many other drugs, including bicuculline and phaclofen, that act on vertebrate GABA receptors were not effective. In summary, GABA is found in projection neurons to the crab STG and can evoke both excitatory and inhibitory actions on STG neurons.


Sign in / Sign up

Export Citation Format

Share Document