Ammonia, Urea and H+ Distribution and the Evolution of Ureotelism in Amphibians

1989 ◽  
Vol 144 (1) ◽  
pp. 215-233 ◽  
Author(s):  
CHRIS M. WOOD ◽  
R. S. MUNGER ◽  
D. P. TOEWS

In theory, the distribution of ammonia across cell membranes (Tammi/Tamme) between intracellular and extracellular fluids (ICF and ECF) may be determined by the transmembrane pH gradient (as in mammals), the transmembrane potential (as in teleost fish), or both, depending on the relative permeability of the membranes to NH3 and NH4+ (pNH3/pNH4+). The resting distributions of H+ (via [14C]DMO), ammonia and urea between plasma and skeletal muscle, and the relative excretion rates of ammonia-N and urea-N, were measured in five amphibian species (Bufo marinus, Ambystoma tigrinum, Rana catesbeiana, Necturus maculosus and Xenopus laevis). Although ureai/ureae ratios were uniformly close to 1.0, Tammi/Tamme. ratios correlated directly with the degree of ammoniotelism in each species, ranging from 9.1 (Bufo, 10% ammoniotelic) to 16.7 (Xenopus, 79% ammoniotelic). These values are intermediate between ratios of about 30 (low pNH3/pNH4+) in ammoniotelic teleost fish and about 3 (high pNH3/pNH4+) in ureotelic mammals. The results indicate that amphibians represent a transitional stage in which ammonia distribution is influenced by both the pHi-pHe gradient and the membrane potential, and that a reduction in cell membrane permeability to NH4+ (i.e. increased pNH3/pNH4+) was associated with the evolution of ureotelism. Hyperosmotic saline exposure increased urea excretion 10-fold in Xenopus, while ammonia excretion remained unchanged. Tammi/Tamme fell, but this response was attributable to an abolition of the pHi-pHe gradient, rather than a physiological change in the cell membrane pNH3/pNH4+.

Author(s):  
M. Ashraf ◽  
L. Landa ◽  
L. Nimmo ◽  
C. M. Bloor

Following coronary artery occlusion, the myocardial cells lose intracellular enzymes that appear in the serum 3 hrs later. By this time the cells in the ischemic zone have already undergone irreversible changes, and the cell membrane permeability is variably altered in the ischemic cells. At certain stages or intervals the cell membrane changes, allowing release of cytoplasmic enzymes. To correlate the changes in cell membrane permeability with the enzyme release, we used colloidal lanthanum (La+++) as a histological permeability marker in the isolated perfused hearts. The hearts removed from sprague-Dawley rats were perfused with standard Krebs-Henseleit medium gassed with 95% O2 + 5% CO2. The hypoxic medium contained mannitol instead of dextrose and was bubbled with 95% N2 + 5% CO2. The final osmolarity of the medium was 295 M osmol, pH 7. 4.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Chunlan Shan ◽  
Shushu Miao ◽  
Chaoying Liu ◽  
Bo Zhang ◽  
Weiwei Zhao ◽  
...  

Abstract Background Pyroptosis plays a pivotal role in the pathogenesis of many inflammatory diseases. The molecular mechanism by which pyroptosis is induced in macrophages following infection with pathogenic E. coli high pathogenicity island (HPI) will be evaluated in our study. Results After infection with the HPI+/HPI− strains and LPS, decreased macrophage cell membrane permeability and integrity were demonstrated with propidium iodide (PI) staining and the lactate dehydrogenase (LDH) assay. HPI+/HPI−-infection was accompanied by upregulated expression levels of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD, with significantly higher levels detected in the HPI+ group compared to those in the HPI− group (P < 0.01 or P < 0.05). HPI+ strain is more pathogenic than HPI− strain. Conclusion Our findings indicate that pathogenic E. coli HPI infection of Saba pigs causes pyroptosis of macrophages characterized by upregulated expression of pyroptosis key factors in the NLRP3/ASC/caspase-1 signaling pathway, direct cell membrane pore formation, and secretion of the inflammatory factor IL-1β and IL-18 downstream of NLRP3 and caspase-1 activation to enhance the inflammatory response.


2015 ◽  
Vol 25 (17) ◽  
pp. 3610-3615 ◽  
Author(s):  
Junsuke Hayashi ◽  
Tomoko Hamada ◽  
Ikumi Sasaki ◽  
Osamu Nakagawa ◽  
Shun-ichi Wada ◽  
...  

1974 ◽  
Vol 64 (6) ◽  
pp. 706-729 ◽  
Author(s):  
W. R. Redwood ◽  
E. Rall ◽  
W. Perl

The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Hsiu-Yang Tseng ◽  
Chiu-Jen Chen ◽  
Zong-Lin Wu ◽  
Yong-Ming Ye ◽  
Guo-Zhen Huang

Cell-membrane permeability to water (Lp) and cryoprotective agents (Ps) of a cell type is a crucial cellular information for achieving optimal cryopreservation in the biobanking industry. In this work, a...


Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Bai ◽  
Chun-Yan Gu ◽  
Rui Pan ◽  
Muhammad Abid ◽  
Hao-Yu Zang ◽  
...  

New fungicides are tools to manage fungal diseases and overcome emerging resistance in fugnal pathogens. In this study, a total of 121 isolates of Fusarium fujikuroi, the causal agent of rice bakanae disease (RBD), were collected from various geographical regions of China, and their sensitivity to a novel succinate dehydrogenase inhibitor (SDHI)fungicide ‘pydiflumetofen’ was evaluated. The 50% effective concentration (EC50) value of pydiflumetofen for mycelial growth suppression ranged from 0.0101 to 0.1012 μg/ml and for conidial germination inhibition ranged from 0.0051to 0.1082 μg/ml. Pydiflumetofen treated hyphae showed contortion and increased branching, cell membrane permeability, and glycerol content significantly. The result of electron microscope transmission indicated that pydiflumetofen damaged the mycelial cell wall and the cell membrane, and almost broken up the cells, which increased the intracellular plasma leakage. There was no cross-resistance between pydiflumetofen and the widely used fungicides such as carbendazim, prochloraz, and phenamacril. Pydiflumetofen was found safe to seeds and rice seedlings of four rice cultivars, used up to 400 μg/ml. Seed treatment significantly decreased the rate of diseased plants in the greenhouse as well as in field trials in 2017 and 2018. Pydiflumetofen showed superb results against RBD, when used at 10 or 20 g a.i./100 kg of treated seeds, providing over 90% control efficacy (the highest control efficacy was up to 97%), which was significantly higher than that of 25% phenamacril (SC) at 10g or carbendazim at 100 g. Pydiflumetofen is highly effective against F. fujikuroi growth and sporulation as well as RBD in the field.


1991 ◽  
Vol 96 (2) ◽  
pp. 644-649 ◽  
Author(s):  
Junping Chen ◽  
Edward I. Sucoff ◽  
Eduard J. Stadelmann

Sign in / Sign up

Export Citation Format

Share Document