scholarly journals Variance: A Possible Coding Mechanism for Gustatory Sensilla on the Labellum of the Fleshfly Sarcophaga Bullata

1990 ◽  
Vol 150 (1) ◽  
pp. 19-36
Author(s):  
B. K. MITCHELL ◽  
J. J.B. SMITH ◽  
P. J. ALBERT ◽  
A. T. WHITEHEAD

In behavioural tests, 2-day-old female Sarcophaga bullata consumed more liver or fish powder in solution than 100 mmol l−1 sucrose. We investigated the chemosensory basis of this discrimination by recording electrophysiological responses of 177 medium-length labellar taste sensilla from 10 different flies to two applications of each of these three solutions. Responses from three chemosensory cells were evident in most records. Cell 1 produced a mean response of 37.6 impulses s−1, and similar responses to all three stimuli. It was the most active of the three cells. Cell 2 produced a significantly greater response to fish than to liver or sucrose in one of the two stimulus applications. Cell 3, the least active, responded with twice the firing rate to fish than to liver or sucrose. However, the mean firing rates did not provide information that could account for the observed behavioural discrimination. The only difference in the electrophysiological responses to the three stimuli which correlated with the behavioural discrimination was the variance of the response of cell 1, which was much higher to sucrose than to either fish or liver. We propose that variance itself could provide the necessary information to allow the fly's nervous system to distinguish between a ‘simple’ stimulus such as sucrose and a ‘complex’ stimulus such as fish or liver.

1985 ◽  
Vol 53 (4) ◽  
pp. 926-939 ◽  
Author(s):  
C. R. Legendy ◽  
M. Salcman

Simultaneous recordings were made from small collections (2-7) of spontaneously active single units in the striate cortex of unanesthetized cats, by means of chronically implanted electrodes. The recorded spike trains were computer scanned for bursts of spikes, and the bursts were catalogued and studied. The firing rates of the neurons ranged from 0.16 to 32 spikes/s; the mean was 8.9 spikes/s, the standard deviation 7.0 spikes/s. Bursts of spikes were assigned a quantitative measure, termed Poisson surprise (S), defined as the negative logarithm of their probability in a random (Poisson) spike train. Only bursts having S greater than 10, corresponding to an occurrence rate of about 0.01 bursts/1,000 spikes in a random spike train, were considered to be of interest. Bursts having S greater than 10 occurred at a rate of about 5-15 bursts/1,000 spikes, or about 1-5 bursts/min. The rate slightly increased with spike rate; averaging about 2 bursts/min for neurons having 3 spikes/s and about 4.5 bursts/min for neurons having 30 spikes/s. About 21% of the recorded units emitted significantly fewer bursts than the rest (below 1 burst/1,000 spikes). The percentage of these neurons was independent of spike rate. The spike rate during bursts was found to be about 3-6 times the average spike rate; about the same for longer as for shorter bursts. Bursts typically contained 10-50 spikes and lasted 0.5-2.0 s. When the number of spikes in the successively emitted bursts was listed, it was found that in some neurons these numbers were not distributed at random but were clustered around one or more preferred values. In this sense, bursts occasionally "recurred" a few times in a few minutes. The finding suggests that neurons are highly reliable. When bursts of two or more simultaneously recorded neurons were compared, the bursts often appeared to be temporally close, especially between pairs of neurons recorded by the same electrode; but bursts seldom started and ended simultaneously on two channels. Recurring bursts emitted by one neuron were occasionally accompanied by time-locked recurring bursts by other neurons.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1839 ◽  
Author(s):  
Yanshan Chen ◽  
Zhan Zhou

In this paper, based on critical point theory, we mainly focus on the multiplicity of nontrivial solutions for a nonlinear discrete Dirichlet boundary value problem involving the mean curvature operator. Without imposing the symmetry or oscillating behavior at infinity on the nonlinear term f, we respectively obtain the sufficient conditions for the existence of at least three non-trivial solutions and the existence of at least two non-trivial solutions under different assumptions on f. In addition, by using the maximum principle, we also deduce the existence of at least three positive solutions from our conclusion. As far as we know, our results are supplements to some well-known ones.


2019 ◽  
Vol 49 (6) ◽  
Author(s):  
Luiz Paulo de Carvalho ◽  
Francisco José Correia Farias ◽  
Josiane Isabela Silva Rodrigues ◽  
Katiane Secco Castro ◽  
Alan Mario Zuffo ◽  
...  

ABSTRACT: Technological traits improvement of cotton fiber is a constant demand by textile industry. This research aimed to identify the potential of improved materials with high lint percentage to contribute with alleles that increase the lint percentage in Extra long staple fiber (ELS) upland cotton. Two contrasting materials for lint percentage (LP) and fiber length (FL) were used, one with long fiber and a low lint percentage (parent A) and another with high lint percentage and medium length (parent B). The following variables were evaluated: lint percentage (LP), upper half mean length (UHML), fiber uniformity (FU), fiber strength (FS), and elongation (EL). Diallel analysis was performed using the Griffing’s Method 4 adapted to partial diallel. Additive effects were predominant over non-additive effects. The mean LP was higher when using parent B. The opposite occurred for UHML. A negative correlation was detected between LP and UHML, showing the difficulty of obtaining genetic gain for both traits at the same time.


1978 ◽  
Vol 41 (2) ◽  
pp. 338-349 ◽  
Author(s):  
R. C. Schreiner ◽  
G. K. Essick ◽  
B. L. Whitsel

1. The present study is based on the demonstration (8, 9) that the relationship between mean interval (MI) and standard deviation (SD) for stimulus-driven activity recorded from SI neurons is well fitted by the linear equation SD = a X MI + b and on the observations that the values of the slope (a) and y intercept (b) parameters of this relationship are independent of stimulus conditions and may vary widely from one neuron to the next (8). 2. A criterion for the discriminability of two different mean firing rates requiring that the mean intervals of their respective interspike interval (ISI) distributions be separated by a fixed interval (expressed in SD units) is developed and, on the basis of this criterion, a graphical display of the capacity of a neuron with a known SD-MI relationship to reflect a change in stimulus conditions with a change in mean firing rate is derived. Using this graphical approach, it is shown that the parameters of the SD-MI relationship for a single neuron determine a range of firing frequencies, within which that neuron exhibits the greatest capacity to signal differences in stimulus conditions using a frequency code. 3. The discrimination criterion is modified to incorporate the changes in the symmetry of the ISI distribution observed to accompany changes in mean firing rate. It is shown that, although the observed symmetry changes do influence the capacity of a cortical neuron to signal a change in stimulus conditions with a change in mean firing rate, they do not alter the range of firing rates (determined by the parameters of the SD-MI relationship) within which the capacity for discrimination is maximal. 4. The maximal number of firing levels that can be distinguished by a somatosensory cortical neuron (using the same discrimination criterion described above) discharging within a specified range of mean frequencies also is demonstrated to depend on the parameters of the linear equation which relates SD to MI. 5. Two approaches based on the t test for differences between two means are developed in an attempt to ascertain the minimum separation of the mean intervals of the ISI distributions necessary for two different mean firing rates to be discriminated with 80% certainty.


1970 ◽  
Vol 53 (1) ◽  
pp. 120-122
Author(s):  
Michel Margosis

Abstract Three solutions containing varying amounts of phenylephrine.HC1 were subjected to a collaborative evaluation of the ion-pair column partition method of Levine and Doyle. Results submitted by 20 collaborators were evaluated statistically. Recoveries averaged 99.0, 100.8, and 103.5% with 95% confidence limits of the mean of ±0.71, ±0.53, and ±0.85%, respectively. The method is recommended for adoption as official first action. The colorimetric method approved last year is recommended for adoption as official final action.


2003 ◽  
Vol 90 (5) ◽  
pp. 3087-3094 ◽  
Author(s):  
Jed A. Hartings ◽  
Simona Temereanca ◽  
Daniel J. Simons

Rats employ rhythmic whisker movements to sample information in their sensory environment. To study frequency tuning and filtering characteristics of thalamic circuitry, we recorded single-unit responses of ventroposterior medial (VPm) and thalamic reticular (Rt) neurons to 1- to 40-Hz sinusoidal and pulsatile whisker deflection in lightly narcotized rats. Neuronal entrainment was assessed by a measure of the relative modulation (RM) of firing at the stimulus frequency given by the first harmonic (F1) of the cycle time histogram divided by the mean firing rate (F0). VPm signaling of both sinusoidal and periodic pulsatile whisker movements improved gradually over 1–16 and was maximal at 20–40 Hz. By contrast, the RM of Rt responses increased over 1–8 Hz, but deteriorated progressively over the 12- to 40-Hz range. In Rt, response adaptation occurred at lower stimulus frequencies and to a greater extent than in VPm. Within a train of high-frequency stimuli, Rt responses progressively decremented, possibly due to the accumulation of inhibition, whereas those of VPm neurons augmented. Mean firing rates in Rt increased 42 spikes/s over 1–40 Hz, providing tonic (low RM) inhibition during high-frequency stimulation that may enhance VPm signal-to-noise ratios. Consistent with this view, VPm mean firing rates increased only 13 spikes/s over 1–40 Hz, and inter-deflection activity was suppressed to a greater extent than stimulus-evoked responses. Rt inhibition is likely to act in concert with actions of neuromodulators in optimizing thalamic temporal signaling of high-frequency whisker movements.


1996 ◽  
Vol 75 (1) ◽  
pp. 38-50 ◽  
Author(s):  
K. E. Tansey ◽  
B. R. Botterman

1. The aim of this study was to examine the nature of motoneuron firing-rate modulation in type-identified motor units during smoothly graded contractions of the cat medial gastrocnemius (MG) muscle evoked by stimulation of the mesencephalic locomotor region (MLR). Motoneuron discharge patterns, firing rates, and the extent of firing-rate modulation in individual units were studied, as was the extent of concomitant changes in firing rates within pairs of simultaneously active units. 2. In 21 pairs of simultaneously active motor units, studied during 41 evoked contractions, the motoneurons' discharge rates and patterns were measured by processing the cells' recorded action potentials through windowing devices and storing their timing in computer memory. Once recruited, most motoneurons increased their firing rates over a limited range of increasing muscle tension and then maintained a fairly constant firing rate as muscle force continued to rise. Most motoneurons also decreased their firing rates over a slightly larger, but still limited, range of declining muscle force before they were derecruited. Although this was the most common discharge pattern recorded, several other interesting patterns were also seen. 3. The mean firing rate for slow twitch (type S) motor units (27.8 imp/s, 5,092 activations) was found to be significantly different from the mean firing rate for fast twitch (type F) motor units (48.4 imp/s, 11,272 activations; Student's t-test, P < 0.001). There was no significant difference between the mean firing rates of fast twitch, fatigue-resistant (type FR) and fast twitch, fatigable (type FF) motor units. When the relationship between motoneuron firing rate and whole-muscle force was analyzed, it was noted that, in general, smaller, lower threshold motor units began firing at lower rates and reached lower peak firing rates than did larger, higher threshold motor units. These results confirm both earlier experimental observations and predictions made by other investigators on the basis of computer simulations of the cat MG motor pool, but are in contrast to motor-unit discharge behavior recorded in some human motor-unit studies. 4. The extent of concomitant changes in firing rate within pairs of simultaneously active motor units was examined to estimate the extent of simultaneous motoneuron firing-rate modulation across the motoneuron pool. A smoothed (5 point sliding average) version of the two motoneurons' instantaneous firing rates was plotted against each other, and the slope and statistical significance of the relationship was determined. In 16 motor-unit pairs, the slope of the motoneurons' firing-rate relationship was significantly distinct from 0. Parallel firing-rate modulation (< 10-fold difference in firing rate change reflected by a slope of > 0.1) was noted only in pairs containing motor units of like physiological type and then only if they were of similar recruitment threshold. 5. Other investigators have demonstrated that changes in a motoneuron's "steady-state" firing rate predictably reflect changes in the amount of effective synaptic current that cell is receiving. The finding in the present study of limited parallel firing-rate modulation between simultaneously active motoneurons would suggest that changes in the synaptic drive to the various motoneurons of the pool is unevenly distributed. This finding, in addition to the findings of orderly motor-unit recruitment and the relationship between motor-unit recruitment threshold and motoneuron firing rate, cannot be adequately accommodated for by the existing models of the synaptic organization in motoneuron pools. Therefore a new model of the synaptic organization within the motoneuron pool has been proposed.


2016 ◽  
Author(s):  
Hiroyuki Miyawaki ◽  
Brendon Watson ◽  
Kamran Diba

AbstractNeurons fire at highly variable innate rates and recent evidence suggests that low and high firing rate neurons display different plasticity and dynamics. Furthermore, recent publications imply possibly differing rate-dependent effects in hippocampus versus neocortex, but those analyses were carried out separately and with possibly important differences. To more effectively synthesize these questions, we analyzed the firing rate dynamics of populations of neurons in both hippocampal CA1 and frontal cortex under one framework that avoids pitfalls of previous analyses and accounts for regression-to-the-mean. We observed remarkably consistent effects across these regions. While rapid eye movement (REM) sleep was marked by decreased hippocampal firing and increased neocortical firing, in both regions firing rates distributions widened during REM due to differential changes in high-firing versus low-firing cells in parallel with increased interneuron activity. In contrast, upon non-REM (NREM) sleep, firing rate distributions narrowed while interneuron firing decreased. Interestingly, hippocampal interneuron activity closely followed the patterns observed in neocortical principal cells rather than the hippocampal principal cells, suggestive of long-range interactions. Following these undulations in variance, the net effect of sleep was a decrease in firing rates. These decreases were greater in lower-firing hippocampal neurons but higher-firing frontal cortical neurons, suggestive of greater plasticity in these cell groups. Our results across two different regions and with statistical corrections indicate that the hippocampus and neocortex show a mixture of differences and similarities as they cycle between sleep states with a unifying characteristic of homogenization of firing during NREM and diversification during REM.Significance StatementMiyawaki and colleagues analyze firing patterns across low-firing and high-firing neurons in the hippocampus and the frontal cortex throughout sleep in a framework that accounts for regression-to-the-mean. They find that in both regions REM sleep activity is relatively dominated by high-firing neurons and increased inhibition, resulting in a wider distribution of firing rates. On the other hand, NREM sleep produces lower inhibition, and results in a more homogenous distribution of firing rates. Integration of these changes across sleep results in net decrease of firing rates with largest drops in low-firing hippocampal pyramidal neurons and high-firing neocortical principal neurons. These findings provide insights into the effects and functions of different sleep stages on cortical neurons.


1960 ◽  
Vol 199 (2) ◽  
pp. 346-348 ◽  
Author(s):  
Richard L. Klein ◽  
William C. Holland

The mean maximum following frequency of single atrial cells as determined by the microelectrode technique was found to be 820/min. with a range of 600–1050. The mean ‘firing’ rate of atrial cells during acetylcholine induced fibrillation was 900/min. with a range of 600–1250/min. The data are interpreted to mean that the observed changes in ion transport during fibrillation are not the result of higher firing rates of atrial cells as compared to those during rapid electrical excitation.


Sign in / Sign up

Export Citation Format

Share Document