K+ transport across the lamprey erythrocyte membrane: characteristics of a Ba(2+)- and amiloride-sensitive pathway

1991 ◽  
Vol 159 (1) ◽  
pp. 303-324 ◽  
Author(s):  
K. Kirk

The characteristics of K+ transport in erythrocytes from the river lamprey (Lampetra fluviatilis) were investigated using standard radioisotope flux techniques. The cells were shown to have a ouabain-sensitive transport pathway that carried 43K+ and 86Rb+ into the cell at similar rates. Most of the ouabain-resistant 43K+ and 86Rb+ influx was via a pathway that was insensitive to cotransport inhibitors and to the replacement of extracellular Cl- or Na+. This pathway showed a strong selectivity for 43K+ over 86Rb+. It was inhibited fully by Ba2+ (I50 approximately 2.8 mumol l-1), amiloride (I50 approximately 150 mumol l-1) and ethylisopropylamiloride (I50 approximately 3.3 mumol l-1) and less effectively by quinine and by the tetraethylammonium ion. Inhibition by Ba2+ took full effect within a few minutes whereas the full inhibitory effect of amiloride took more than 1 h to develop. Experiments with the membrane potential probe [14C]tetraphenylphosphonium ion gave results consistent with the lamprey erythrocyte membrane having a Ba(2+)-sensitive K+ conductance that was significantly greater than the membrane Na+ conductance and which gave rise to a marked dependence of the membrane potential on the extracellular K+ concentration. The rate constants for Ba(2+)-sensitive 43K+ and 86Rb+ influx decreased (proportionally) with increasing extracellular K+ concentration in a manner that was consistent with the transport being via a conductive pathway. The decrease was attributed to a depolarisation of the membrane (in response to the increasing extracellular K+ concentration) and a consequent decrease in the driving force for the conductive movement of 43K+ and 86Rb+ into the cells. Ba(2+)-sensitive 86Rb+ influx increased significantly with decreasing cell volume and with increasing intracellular pH (at a constant extracellular pH) but increased only slightly with increasing extracellular pH. The pathway operated normally in the complete absence of extracellular Ca2+ but its activity decreased in cells pretreated with ionomycin and EGTA; this suggests a role for intracellular Ca2+ in the operation of the pathway.

1998 ◽  
Vol 201 (5) ◽  
pp. 693-700 ◽  
Author(s):  
A Bogdanova ◽  
A Sherstobitov ◽  
G P Gusev

The existence of a furosemide-sensitive Cl- transport pathway activated by external Ca2+ and Mg2+ has been demonstrated previously in studies of Cl- influx across the lamprey erythrocyte membrane. The aim of the present study was to characterize further specific Cl- transport pathways, especially those involved in Cl- efflux, in the red blood cell membrane of Lampetra fluviatilis. Cl- efflux was inhibited by 0.05 mmol l-1 dihydroindenyloxyalkanoic acid (DIOA) (81 %), 1 mmol l-1 furosemide (76 %) and 0.1 mmol l-1 niflumic acid (54 %). Bumetanide (100 micromol l-1) and DIDS (100 micromol l-1) had no effect effect on Cl- efflux. Substitution of external Cl- by gluconate, but not by NO3-, led to a gradual decline of Cl- efflux. In addition, the removal of external Ca2+ resulted in a significant reduction in the rate of Cl- efflux. Membrane depolarization caused by increasing external K+ concentration or by inhibiting K+ channels with 1 mmol l-1 Ba2+ did not affect Cl- efflux. The furosemide-sensitive component of Cl- influx was a saturable function of external [Cl-] with an apparent Km of approximately 92 mmol l-1 and Vmax of approximately 17.8 mmol l-1 cells-1 h-1. Furosemide did not affect intracellular Cl- concentration (57.6+/-5. 2 mmol l-1 cell water), measured using an ion-selective Cl- electrode, showing that a furosemide-sensitive pathway is not involved in net Cl- movement. A gradual fall (from 28.1+/-1.4 to 15. 0+/-1.3 mmol l-1 cells-1 h-1) in unidirectional Cl- influx with time was observed within 3 h of cell preincubation in the standard physiological medium. These data provide evidence for the existence for an electroneutral furosemide-sensitive anion-exchange pathway in the lamprey erythrocyte membrane that accepts chloride and nitrate, but not bicarbonate or bromide.


1991 ◽  
Vol 159 (1) ◽  
pp. 325-334 ◽  
Author(s):  
K. Kirk

The effect of the sulphydryl reagent N-ethylmaleimide on the K+ and Cl- transport pathways of the lamprey erythrocyte membrane was found to be quite complex. N-Ethylmaleimide inhibited the Ba(2+)-sensitive pathway that mediates most of the ouabain-resistant influx of K+ into the cell under physiological conditions but stimulated a Cl(−)-dependent, B(2+)-resistant K+ transport pathway that was inhibited by compounds that inhibit Cl(−)-dependent K+ transport in the human erythrocyte. N-Ethylmaleimide (in most cases) reduced the total influx of Cl- into the lamprey erythrocyte but (in all cases) introduced a K(+)-dependent component into the measured Cl- uptake; this was explained in terms of N-ethylmaleimide having inhibited the pathway primarily responsible for Cl- influx under physiological conditions but having stimulated a second, K(+)-dependent Cl- transport pathway. Although the magnitude of the K+ and Cl- fluxes stimulated by N-ethylmaleimide varied widely between cells from different lampreys, there was, in each individual case, a close similarity between the magnitude of the Cl(−)-dependent K+ influx (calculated from the 86Rb+ uptake) and the K(+)-dependent Cl- influx; the mean value for the ratio of the former to the latter was 1.01 +/− 0.03 (N = 5). The results are therefore consistent with the sulphydryl reagent having activated a K+/Cl- cotransport system similar to that present in erythrocytes from many mammalian species. This raises the possibility that the lamprey red cell may be a uniquely suitable system in which to study the characteristics of Cl- transport by this pathway.


2019 ◽  
Vol 60 (11) ◽  
pp. 2423-2435 ◽  
Author(s):  
Dorsaf Hmidi ◽  
Dorsaf Messedi ◽  
Claire Corratg�-Faillie ◽  
Th�o Marhuenda ◽  
C�cile Fizames ◽  
...  

Abstract Control of K+ and Na+ transport plays a central role in plant adaptation to salinity. In the halophyte Hordeum maritimum, we have characterized a transporter gene, named HmHKT2;1, whose homolog HvHKT2;1 in cultivated barley, Hordeum vulgare, was known to give rise to increased salt tolerance when overexpressed. The encoded protein is strictly identical in two H. maritimum ecotypes, from two biotopes (Tunisian sebkhas) affected by different levels of salinity. These two ecotypes were found to display distinctive responses to salt stress in terms of biomass production, Na+ contents, K+ contents and K+ absorption efficiency. Electrophysiological analysis of HmHKT2;1 in Xenopus oocytes revealed distinctive properties when compared with HvHKT2;1 and other transporters from the same group, especially a much higher affinity for both Na+ and K+, and an Na+–K+ symporter behavior in a very broad range of Na+ and K+ concentrations, due to reduced K+ blockage of the transport pathway. Domain swapping experiments identified the region including the fifth transmembrane segment and the adjacent extracellular loop as playing a major role in the determination of the affinity for Na+ and the level of K+ blockage in these HKT2;1 transporters. The analysis (quantitative reverse transcription-PCR; qRT-PCR) of HmHKT2;1 expression in the two ecotypes submitted to saline conditions revealed that the levels of HmHKT2;1 transcripts were maintained constant in the most salt-tolerant ecotype whereas they decreased in the less tolerant one. Both the unique functional properties of HmHKT2;1 and the regulation of the expression of the encoding gene could contribute to H. maritimum adaptation to salinity.


1979 ◽  
Vol 78 (1) ◽  
pp. 29-45
Author(s):  
MAURIZIO MIROLLI

1. The response of the coxal receptors of the crab Scylla serrata to step stretches consisted of a partial action potential, Vα, followed by a steady-state depolarization, V8. The input resistance of the fibre was reduced during V8. 2. In the absence of stimulation, the dendrites of the receptors depolarized when external Na+ was substituted with choline or Li+, and when the external K+ concentration was increased or decreased. The dendrites also depolarized when ouabain was added to the saline. 3. The amplitude of both Vα and V8 was dependent on external Na+. In cells which were depolarized by ouabain, the amplitude of V8 increased when the K+ concentration of the saline was reduced. 4. V8 was followed by a small, but long-lasting, after-potential which was depolarizing when the membrane potential was between −70 and −60 mV. In cells depolarized by ouabain or by low K+ saline, the after-potential became hyperpolarizing. 5. When trains of brief stretches (each 5 ms in duration) were used as stimuli, the cells responded with trains of Vα responses. During this tetanic stimulation the cells hyperpolarized; cessation of the stimulus train was followed by a long-lasting hyperpolarization (PTH). 6. PTH was abolished in Li+ saline, in low K+ saline, and in the presence of ouabain. In control or in low K+ saline, PTH was not accompanied by a decrease in the input resistance of the fibres. 7. It is concluded that an electrogenic Na+ pump (or equivalent process) contributes a substantial fraction of the membrane potential of the unstimulated coxal receptors. Pump activity could be increased by Na+-loading the distal part of the cells with trains of Vα responses. By contrast, during the steady-state response to stretch, the pump was not activated.


1996 ◽  
Vol 271 (3) ◽  
pp. R738-R750 ◽  
Author(s):  
Y. Wang ◽  
G. J. Heigenhauser ◽  
C. M. Wood

Manipulations of pH and electrical gradients in a perfused preparation were used to analyze the factors controlling ammonia distribution and flux in trout white muscle after exercise. Trout were exercised to exhaustion, and then an isolated-perfused white muscle preparation with discrete arterial inflow and venous outflow was made from the posterior portion of the tail. The tail-trunks were perfused with low (7.4)-, medium (7.9)-, and high (8.4)-pH saline, achieved by varying HCO3- concentration ([HCO3-]) at constant Pco2. Intracellular and extracellular pH, ammonia, CO2, K+, Na+, and Cl- were measured. Muscle intracellular pH was not affected by changes in extracellular pH. Increasing extracellular pH caused a decrease in the transmembrane NH3 partial pressure (PNH3) gradient and a decrease in ammonia efflux. When extracellular K+ concentration was increased from 3.5 to 15 mM in the medium-pH group, a depolarization of the muscle cell membrane potential from -92 to -60 mV and a 0.1-unit depression in intracellular pH occurred. Ammonia efflux increased despite a marked reduction in the PNH3 gradient. Amiloride (10(-4) M) had no effect, indicating that Na+/H(+)-NH4+ exchange does not participate in ammonia transport in this system. A comparison of observed intracellular-to-extracellular ammonia distribution ratios with those modeled according to either pH or Nernst potential distributions supports a model in which ammonia distribution across white muscle cell membranes is affected by both pH and electrical gradients, indicating that the membranes are permeable to both NH3 and NH4+. Membrane potential, acting to retain high levels of NH4+ in the intracellular compartment, appears to have the dominant influence during the postexercise period. However, at rest, the pH gradient may be more important, resulting in much lower intracellular ammonia levels and distribution ratios. We speculate that the muscle cell membrane NH3-to-NH4+ permeability ratio in trout may change between the rest and postexercise condition.


1980 ◽  
Vol 239 (6) ◽  
pp. G485-G492
Author(s):  
P. C. Sen ◽  
L. L. Tague ◽  
T. K. Ray

The transport of K+ and H+ (both expressed as mueq/h) by in vitro chambered bullfrog (Rana catesbeiana) gastric mucosa have been studied under a variety of conditions such as anoxia, addition of p-chloromercuribenzene sulfonic acid (PCMBS) into the secretory solution, inclusion of ouabain in the nutrient solution, addition of thiocyanate (SCN-) into the mucosal solution, and replacement of nutrient chloride (Cl-) with sulfate (SO4(2-)), or gluconate (Gl). Anoxia reversibly reduced the H+ transport close to zero within 15 min and gradually reduces the K+ transport throughout the 2-h period of anoxia. The presence of 2.5 X 10(-4) M mucosal PCMBS in the histamine-stimulated mucosa increases the K+ transport, which is promptly reduced by changing the gas phase to 95% N2-5% CO2. Addition of ouabain to the nutrient solution of the histamine-stimulated mucosa with PCMBS on the mucosal side significantly (P < 0.05) reduces the K+ transport within 60 min. Addition of SCN- to the mucosal solution of a histamine-stimulated mucosa with regular nutrient or O, K+ nutrient and 10, K+ mucosal solution reduces the H+ transport to near zero within 60 min. This SCN- inhibition can be reversed by elevating secretory K+. Substitution of nutrient Cl- with SO4(2-) or Gl in the histamine-stimulated mucosa reversibly inhibits H+ transport and reduces K+ transport to a low level (0.7 +/- 0.05). Our data suggest that the K+ transport across the apical membranes of gastric cells is to a large extent a passive carrier-mediated process, and the transport of both K+ and Cl- are coupled at the apical membrane.


Sign in / Sign up

Export Citation Format

Share Document