The efficiency of frog ventricular muscle.

1994 ◽  
Vol 197 (1) ◽  
pp. 143-164
Author(s):  
D A Syme

Mechanical power and oxygen consumption (VO2) were measured simultaneously from isolated segments of trabecular muscle from the frog (Rana pipiens) ventricle. Power was measured using the work-loop technique, in which bundles of trabeculae were subjected to cyclic, sinusoidal length change and phasic stimulation. VO2 was measured using a polarographic O2 electrode. Both mechanical power and VO2 increased with increasing cycle frequency (0.4-0.9 Hz), with increasing muscle length and with increasing strain (= shortening, range 0-25% of resting length). Net efficiency, defined as the ratio of mechanical power output to the energy equivalent of the increase in VO2 above resting level, was independent of cycle frequency and increased from 8.1 to 13.0% with increasing muscle length, and from 0 to 13% with increasing strain, in the ranges examined. Delta efficiency, defined as the slope of the line relating mechanical power output to the energy equivalent of VO2, was 24-43%, similar to that reported from studies using intact hearts. The cost of increasing power output was greater if power was increased by increasing cycle frequency or muscle length than if it was increased by increasing strain. The results suggest that the observation that pressure-loading is more costly than volume-loading is inherent to these muscle fibres and that frog cardiac muscle is, if anything, less efficient than most skeletal muscles studied thus far.

1988 ◽  
Vol 140 (1) ◽  
pp. 287-299 ◽  
Author(s):  
DARRELL R. STOKES ◽  
ROBERT K. JOSEPHSON

The mechanical power output was measured from scaphognathite (SG = gill bailer) muscle L2B of the crab Carcinus maenas (L.). The work was determined from the area of the loop formed by plotting muscle length against force when the muscle was subjected to sinusoidal length change (strain) and phasic stimulation in the length cycle. The stimulation pattern (10 stimuli per burst, burst length = 20% of cycle length) mimicked that which has been recorded from muscle L2B in intact animals. Work output was measured at cycle frequencies ranging from 0.5 to 5 Hz. The work output at optimum strain and stimulus phase increased with increasing cycle frequency to a maximum at 2–3 Hz and declined thereafter. The maximum work per cycle was 2.7 J kg−1 (15 °C). The power output reached a maximum (8.8 W kg−1) at 4 Hz. Both optimum strain and optimum stimulus phase were relatively constant over the range of burst frequencies examined. Based on the fraction of the total SG musculature represented by muscle L2B (18%) and literature values for the oxygen consumption associated with ventilation in C. maenas and for the hydraulic power output from an SG, we estimate that at a beat frequency of 2 Hz the SG muscle is about 10% efficient in converting metabolic energy to muscle power, and about 19% efficient in converting muscle power to hydraulic power.


1990 ◽  
Vol 149 (1) ◽  
pp. 61-78 ◽  
Author(s):  
R. D. STEVENSON ◽  
ROBERT K. JOSEPHSON

1. Mechanical work output was determined for an indirect flight muscle, the first dorsoventral, of the tobacco hawkmoth Manduca sexta. Work output per cycle was calculated from the area of force-position loops obtained during phasic electrical stimulation (1 stimulus cycle−1) and imposed sinusoidal length change. There was an optimal stimulus phase and an optimal length change (strain) that maximized work output (loop area) at constant cycle frequency and temperature. 2. When cycle frequency was increased at constant temperature, work output first increased and then decreased. It was always possible to find a frequency that maximized work output. There also always existed a higher frequency (termed the ‘optimal’ frequency in this paper) that maximized the mechanical power output, which is the product of the cycle frequency (s−1) and the work per cycle (J). 3. As temperature increased from 20 to 40°C, the mean maximum power output increased from about 20 to about 90 W kg−1 of muscle (Q10=2.09). There was a corresponding increase in optimal frequency from 12.7 to 28.3 Hz, in the work per cycle at optimal frequency from 1.6 to 3.2Jkg−1 muscle and in mean optimal strain from 5.9 to 7.9%. 4. Two electrical stimuli per cycle cannot increase power output at flight frequencies, but if frequency is reduced then power output can be increased with multiple stimulation. 5. Comparison of mechanical power output from muscle and published values of energy expenditure during free hovering flight of Manduca suggests that mechanical efficiency is about 10%. 6. In the tobacco hawkmoth there is a good correspondence between, on the one hand, the conditions of temperature (35–40°C) and cycle frequency (28–32 Hz) that produce maximal mechanical power output in the muscle preparation and, on the other hand, the thoracic temperature (35–42°C) and wing beat frequency (24–32 Hz) observed during hovering flight.


2000 ◽  
Vol 203 (17) ◽  
pp. 2667-2689 ◽  
Author(s):  
R.K. Josephson ◽  
J.G. Malamud ◽  
D.R. Stokes

The basalar muscle of the beetle Cotinus mutabilis is a large, fibrillar flight muscle composed of approximately 90 fibers. The paired basalars together make up approximately one-third of the mass of the power muscles of flight. Changes in twitch force with changing stimulus intensity indicated that a basalar muscle is innervated by at least five excitatory axons and at least one inhibitory axon. The muscle is an asynchronous muscle; during normal oscillatory operation there is not a 1:1 relationship between muscle action potentials and contractions. During tethered flight, the wing-stroke frequency was approximately 80 Hz, and the action potential frequency in individual motor units was approximately 20 Hz. As in other asynchronous muscles that have been examined, the basalar is characterized by high passive tension, low tetanic force and long twitch duration. Mechanical power output from the basalar muscle during imposed, sinusoidal strain was measured by the work-loop technique. Work output varied with strain amplitude, strain frequency, the muscle length upon which the strain was superimposed, muscle temperature and stimulation frequency. When other variables were at optimal values, the optimal strain for work per cycle was approximately 5%, the optimal frequency for work per cycle approximately 50 Hz and the optimal frequency for mechanical power output 60–80 Hz. Optimal strain decreased with increasing cycle frequency and increased with muscle temperature. The curve relating work output and strain was narrow. At frequencies approximating those of flight, the width of the work versus strain curve, measured at half-maximal work, was 5% of the resting muscle length. The optimal muscle length for work output was shorter than that at which twitch and tetanic tension were maximal. Optimal muscle length decreased with increasing strain. The curve relating work output and muscle length, like that for work versus strain, was narrow, with a half-width of approximately 3 % at the normal flight frequency. Increasing the frequency with which the muscle was stimulated increased power output up to a plateau, reached at approximately 100 Hz stimulation frequency (at 35 degrees C). The low lift generated by animals during tethered flight is consistent with the low frequency of muscle action potentials in motor units of the wing muscles. The optimal oscillatory frequency for work per cycle increased with muscle temperature over the temperature range tested (25–40 degrees C). When cycle frequency was held constant, the work per cycle rose to an optimum with increasing temperature and then declined. We propose that there is a temperature optimum for work output because increasing temperature increases the shortening velocity of the muscle, which increases the rate of positive work output during shortening, but also decreases the durations of the stretch activation and shortening deactivation that underlie positive work output, the effect of temperature on shortening velocity being dominant at lower temperatures and the effect of temperature on the time course of activation and deactivation being dominant at higher temperatures. The average wing-stroke frequency during free flight was 94 Hz, and the thoracic temperature was 35 degrees C. The mechanical power output at the measured values of wing-stroke frequency and thoracic temperature during flight, and at optimal muscle length and strain, averaged 127 W kg(−1)muscle, with a maximum value of 200 W kg(−1). The power output from this asynchronous flight muscle was approximately twice that measured with similar techniques from synchronous flight muscle of insects, supporting the hypothesis that asynchronous operation has been favored by evolution in flight systems of different insect groups because it allows greater power output at the high contraction frequencies of flight.


1997 ◽  
Vol 200 (7) ◽  
pp. 1133-1143 ◽  
Author(s):  
F O Lehmann ◽  
M H Dickinson

The limits of flight performance have been estimated in tethered Drosophila melanogaster by modulating power requirements in a 'virtual reality' flight arena. At peak capacity, the flight muscles can sustain a mechanical power output of nearly 80 W kg-1 muscle mass at 24 degrees C, which is sufficient to generate forces of approximately 150% of the animal's weight. The increase in flight force above that required to support body weight is accompanied by a rise in wing velocity, brought about by an increase in stroke amplitude and a decrease in stroke frequency. Inertial costs, although greater than either profile or induced power, would be minimal with even modest amounts of elastic storage, and total mechanical power energy should be equivalent to aerodynamic power alone. Because of the large profile drag expected at low Reynolds numbers, the profile power was approximately twice the induced power at all levels of force generation. Thus, it is the cost of overcoming drag, and not the production of lift, that is the primary requirement for flight in Drosophila melanogaster. By comparing the estimated mechanical power output with respirometrically measured total power input, we determined that muscle efficiency rises with increasing force production to a maximum of 10%. This change in efficiency may reflect either increased crossbridge activation or a favorable strain regime during the production of peak forces.


1994 ◽  
Vol 187 (1) ◽  
pp. 295-303 ◽  
Author(s):  
R Josephson ◽  
D Stokes

The mechanical power output during oscillatory contraction was determined for the flagellum abductor muscle of the crab Carcinus maenas using the work loop technique. Measurements were made at 10 Hz, which is the normal operating frequency of the muscle. The temperature was 15 °C. Increasing the number of stimuli per cycle (given at an interstimulus interval of 3.3 ms) decreased the number of cycles required to reach a work plateau and increased the work per cycle at the plateau to a maximum at 4­5 stimuli per cycle. The maximum mechanical power output was 9.7 W kg-1 muscle (about 26 W kg-1 myofibril). The optimum strain for work output (5.7 %) was close to the estimated muscle strain in vivo (5.2 %).


1997 ◽  
Vol 200 (24) ◽  
pp. 3119-3131 ◽  
Author(s):  
G N Askew ◽  
R L Marsh

The effects of length trajectory on the mechanical power output of mouse soleus and extensor digitorum longus (EDL) muscles were investigated using the work loop technique in vitro at 37 degrees C. Muscles were subjected to sinusoidal and sawtooth cycles of lengthening and shortening; for the sawtooth cycles, the proportion of the cycle spent shortening was varied. For each cycle frequency examined, the timing and duration of stimulation and the strain amplitude were optimized to yield the maximum power output. During sawtooth length trajectories, power increased as the proportion of the cycle spent shortening increased. The increase in power was attributable to more complete activation of the muscle due to the longer stimulation duration, to a more rapid rise in force resulting from increased stretch velocity and to an increase in the optimal strain amplitude. The power produced during symmetrical sawtooth cycles was 5-10 % higher than during sinusoidal work loops. Maximum power outputs of 92 W kg-1 (soleus) and 247 W kg-1 (EDL) were obtained by manipulating the length trajectory. For each muscle, this was approximately 70 % of the maximum power output estimated from the isotonic force-velocity relationship. We have found a number of examples suggesting that animals exploit prolonging the shortening phase during activities requiring a high power output, such as flying, jet-propulsion swimming and vocalization. In an evolutionary context, increasing the relative shortening duration provides an alternative to increasing the maximum shortening velocity (Vmax) as a way to increase power output.


1993 ◽  
Vol 174 (1) ◽  
pp. 185-197 ◽  
Author(s):  
S. J. Swoap ◽  
T. P. Johnson ◽  
R. K. Josephson ◽  
A. F. Bennett

The mechanical power output of fast-twitch fibres from the iliofibularis of the lizard Dipsosaurus dorsalis was measured over a broad body temperature range using the oscillatory work-loop technique. The optimal cycling frequency, that frequency at which mechanical power output is maximal, increases with temperature from 3.3 Hz at 15°C to 20.1 Hz at 42°C. Maximum power output increases with temperature, from 20 W kg-1 at 15°C to 154 W kg-1 at 42°C, the largest power output yet measured using the work-loop technique. At low temperatures (15°C and 22°C), stride frequency during burst running is nearly identical to the optimal cycling frequency for in vitro power output, suggesting that maximum power output may limit hindlimb cycle frequency in vivo. However, at higher temperatures (35°C and 42°C), the optimal cycling frequency of the isolated muscle is significantly higher than the burst stride frequency, demonstrating that contractile events no longer limit hindlimb cycle frequency. At higher temperatures, it is thus unlikely that the fast-twitch fibres of this muscle in vivo attain their potential for maximum power output.


1991 ◽  
Vol 157 (1) ◽  
pp. 409-423 ◽  
Author(s):  
TIMOTHY P. JOHNSON ◽  
IAN A. JOHNSTON

Fast muscle fibres were isolated from the abdominal myotomes of the shorthorned sculpin Myoxocephalus scorpius L. Sinusoidal length changes were imposed about resting muscle length and fibres were stimulated at a selected phase during the strain cycle. The work output per cycle was calculated from the area of the resulting force-position loops. The strain amplitude required for maximum work per cycle had a distinct optimum at ±5 % of resting length, which was independent of temperature. Maximum positive work loops were obtained by retarding the stimulus relative to the start of the length-change cycle by 30° (full cycle=360°). The maximum negative work output was obtained with a 210° stimulus phase shift. At intermediate stimulus phase shifts, work loops became complex with both positive (anticlockwise) and negative (clockwise) components. The number and timing of stimuli were adjusted, at constant strain amplitude (±5% of resting muscle length), to optimize net positive work output over a range of cycle frequencies. The cycle frequency required for maximum power output (work per cycle times cycle frequency) increased from around 5–7 Hz at 4°C to 9–13 Hz at 15°C. The maximum tension generated per cycle at 15°C was around two times higher at all cycle frequencies in summer-relative to winter-acclimatized fish. Fast muscle fibres from summer fish produced consistently higher tensions at 4°C, but the differences were only significant at 15 Hz. Acclimatization also modified the relationship between peak length and peak force at 4°C and 15°C. The maximum power output of muscle fibres showed little seasonal variation at 4°C and was in the range 20–25 W kg−1. In contrast, at 15°C, maximum muscle power output increased from 9 W kg−1 in the winter- to 30 W kg−1 in the summeracclimatized fish


2013 ◽  
Vol 10 (82) ◽  
pp. 20121050 ◽  
Author(s):  
Fritz-Olaf Lehmann ◽  
Dimitri A. Skandalis ◽  
Ruben Berthé

Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings’ downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings.


Sign in / Sign up

Export Citation Format

Share Document