hovering flight
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 48)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 34 (1) ◽  
pp. 011902
Author(s):  
Xueyu Ji ◽  
Li Wang ◽  
Sridhar Ravi ◽  
Fang-Bao Tian ◽  
John Young ◽  
...  

Author(s):  
Shengjie Xiao ◽  
Kai Hu ◽  
Binxiao Huang ◽  
Huichao Deng ◽  
Xilun Ding

AbstractMost insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane, and perform precise hovering flight. Further, most birds can utilize tails and muscles in wings to actively control the flight performance, while insects control their flight with muscles based on wing root along with wing’s passive deformation. Based on the above flight principles of birds and insects, Flapping Wing Micro Air Vehicles (FWMAVs) are classified as either bird-inspired or insect-inspired FWMAVs. In this review, the research achievements on mechanisms of insect-inspired, hoverable FWMAVs over the last ten years (2011–2020) are provided. We also provide the definition, function, research status and development prospect of hoverable FWMAVs. Then discuss it from three aspects: bio-inspiration, motor-driving mechanisms and intelligent actuator-driving mechanisms. Following this, research groups involved in insect-inspired, hoverable FWMAV research and their major achievements are summarized and classified in tables. Problems, trends and challenges about the mechanism are compiled and presented. Finally, this paper presents conclusions about research on mechanical structure, and the future is discussed to enable further research interests.


Author(s):  
Shih-Sin Wei ◽  
Meng-Che Lee ◽  
Jhen-Wei Huang ◽  
Yueh Lu ◽  
Che-Hao Kang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Nan Zheng ◽  
Moli Chen ◽  
Guihuo Luo ◽  
Zhifeng Ye

When aircraft make a maneuvering during flight, additional loads acting on the engine rotor system are generated, which may induce rub-impact faults between the rotor and stator. To study the rub-impact response characteristics of the rotor system during hovering flight, the dynamic model of a rub-impact rotor system is established with lateral-torsional vibration coupling effect under arbitrary maneuvering flight conditions using the finite element method and Lagrange equation. An implicit numerical integral method combining the Newmark-β and Newton–Raphson methods is used to solve the vibration response. The results indicate that the dynamic characteristics of the rotor system will change during maneuvering flight, and the subharmonic vibrations are amplified in both lateral and torsional vibrations due to maneuvering overload. The form of the rub-impact is different during level and hovering flight conditions: the rub-impact may occur at an arbitrary phase of the whole cycle under the condition of level flight, while only local rub-impact occurs during hovering flight. Under the both flight conditions, the rub-impact has a large effect on the spectral characteristics, periodicity, and stability of the rotor system.


Author(s):  
Naeem Haider ◽  
Aamer Shahzad ◽  
Muhammad Nafees Mumtaz Qadri ◽  
Taimur Ali Shams

Sign in / Sign up

Export Citation Format

Share Document