scholarly journals A computational fluid dynamic study of hawkmoth hovering

1998 ◽  
Vol 201 (4) ◽  
pp. 461-477 ◽  
Author(s):  
H Liu ◽  
C P Ellington ◽  
K Kawachi ◽  
C van den Berg ◽  
A P Willmott

A computational fluid dynamic (CFD) modelling approach is used to study the unsteady aerodynamics of the flapping wing of a hovering hawkmoth. We use the geometry of a Manduca sexta-based robotic wing to define the shape of a three-dimensional 'virtual' wing model and 'hover' this wing, mimicking accurately the three-dimensional movements of the wing of a hovering hawkmoth. Our CFD analysis has established an overall understanding of the viscous and unsteady flow around the flapping wing and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. <P> A coherent leading-edge vortex with axial flow was detected during translational motions of both the up- and downstrokes. The attached leading-edge vortex causes a negative pressure region and, hence, is responsible for enhancing lift production. The axial flow, which is derived from the spanwise pressure gradient, stabilises the vortex and gives it a characteristic spiral conical shape. <P> The leading-edge vortex created during previous translational motion remains attached during the rotational motions of pronation and supination. This vortex, however, is substantially deformed due to coupling between the translational and rotational motions, develops into a complex structure, and is eventually shed before the subsequent translational motion. <P> Estimation of the forces during one complete flapping cycle shows that lift is produced mainly during the downstroke and the latter half of the upstroke, with little force generated during pronation and supination. The stroke plane angle that satisfies the horizontal force balance of hovering is 23.6 degrees , which shows excellent agreement with observed angles of approximately 20-25 degrees . The time-averaged vertical force is 40 % greater than that needed to support the weight of the hawkmoth.

1997 ◽  
Vol 352 (1351) ◽  
pp. 329-340 ◽  
Author(s):  
Coen van den Berg ◽  
Charles P. Ellington

Recent flow visualisation experiments with the hawkmoth, Manduca sexta , revealed small but clear leading–edge vortex and a pronounced three–dimensional flow. Details of this flow pattern were studied with a scaled–up, robotic insect (‘the flapper’) that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading–edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 % of the wing length, its diameter increased approximately from 10 to 50 % of the wing chord. The leading–edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 % of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading–edge vortex were fully used for lift generation, it could support up to two–thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.


1997 ◽  
Vol 352 (1351) ◽  
pp. 317-328 ◽  
Author(s):  
Coen van den Berg ◽  
Charles P. Ellington

Visualization experiments with Manduca sexta have revealed the presence of a leading–edge vortex and a highly three–dimensional flow pattern. To further investigate this important discovery, a scaled–up robotic insect was built (the ‘flapper’) which could mimic the complex movements of the wings of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing revealed a small but strong leading–edge vortex on the downstroke. This vortex had a high axial flow velocity and was stable, separating from the wing at approximately 75 % of the wing length. It connected to a large, tangled tip vortex, extending back to a combining stopping and starting vortex from pronation. At the end of the downstroke, the wake could be approximated as one vortex ring per wing. Based on the size and velocity of the vortex rings, the mean lift force during the downstroke was estimated to be about 1.5 times the body weight of a hawkmoth, confirming that the downstroke is the main provider of lift force.


2018 ◽  
Vol 5 (7) ◽  
pp. 172197 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Stable attachment of a leading-edge vortex (LEV) plays a key role in generating the high lift on rotating wings with a central body. The central body size can affect the LEV structure broadly in two ways. First, an overall change in the size changes the Reynolds number, which is known to have an influence on the LEV structure. Second, it may affect the Coriolis acceleration acting across the wing, depending on the wing-offset from the axis of rotation. To investigate this, the effects of Reynolds number and the wing-offset are independently studied for a rotating wing. The three-dimensional LEV structure is mapped using a scanning particle image velocimetry technique. The rapid acquisition of images and their correlation are carefully validated. The results presented in this paper show that the LEV structure changes mainly with the Reynolds number. The LEV-split is found to be only minimally affected by changing the central body radius in the range of small offsets, which interestingly includes the range for most insects. However, beyond this small offset range, the LEV-split is found to change dramatically.


2009 ◽  
Vol 113 (1142) ◽  
pp. 253-262 ◽  
Author(s):  
P. C. Wilkins ◽  
K. Knowles

AbstractThe aerodynamics of insect-like flapping are dominated by the production of a large, stable, and lift-enhancing leading-edge vortex (LEV) above the wing. In this paper the phenomenology behind the LEV is explored, the reasons for its stability are investigated, and the effects on the LEV of changing Reynolds number or angle-of-attack are studied. A predominantly-computational method has been used, validated against both existing and new experimental data. It is concluded that the LEV is stable over the entire range of Reynolds numbers investigated here and that changes in angle-of-attack do not affect the LEV’s stability. The primary motivation of the current work is to ascertain whether insect-like flapping can be successfully ‘scaled up’ to produce a flapping-wing micro air vehicle (FMAV) and the results presented here suggest that this should be the case.


AIAA Journal ◽  
1976 ◽  
Vol 14 (4) ◽  
pp. 519-525 ◽  
Author(s):  
James A. Weber ◽  
Guenter W. Brune ◽  
Forrester T. Johnson ◽  
Paul Lu ◽  
Paul E. Rubbert

2015 ◽  
Vol 10 (5) ◽  
pp. 056020 ◽  
Author(s):  
Nathan Phillips ◽  
Kevin Knowles ◽  
Richard J Bomphrey

Author(s):  
Ye-Bonne Koyama Maldonado ◽  
Gregory Delattre ◽  
Cedric Illoul ◽  
Clement Dejeu ◽  
Laurent Jacquin

Leading-edge vortex flows are often present on propeller blades at take-off, however, their characteristics and aerodynamic impact are still not fully understood. An experimental investigation using Time Resolved Particle Image Velocimetry (TR-PIV) has been performed on a model blade in order to classify this flow with respect to both delta wing leading-edge vortices and the low Reynolds number studies regarding leading-edge vortices on rotating blades. A numerical calculation of the experimental setup has been performed in order to assess usual numerical methods for propeller performance prediction against TR-PIV results. Similar characteristics were found with non slender delta wing vortices at low incidence, which hints that the leading-edge vortex flow may generate vortex lift. The influence of rotation on the characteristics of the leading-edge vortex is compared to that of the pressure gradient caused by the circulation distribution. A discussion on the quality of the PIV reconstruction for close-wall structures is provided.


Sign in / Sign up

Export Citation Format

Share Document