Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis

2000 ◽  
Vol 203 (22) ◽  
pp. 3445-3457 ◽  
Author(s):  
P. Furla ◽  
I. Galgani ◽  
I. Durand ◽  
D. Allemand

The sources and mechanisms of inorganic carbon transport for scleractinian coral calcification and photosynthesis were studied using a double labelling technique with H(14)CO(3) and (45)Ca. Clones of Stylophora pistillata that had developed into microcolonies were examined. Compartmental and pharmacological analyses of the distribution of(45)Ca and H(14)CO(3) in the coelenteron, tissues and skeleton were performed in dark or light conditions or in the presence of various seawater HCO(3)(−) concentrations. For calcification, irrespective of the lighting conditions, the major source of dissolved inorganic carbon (DIC) is metabolic CO(2) (70–75% of total CaCO(3) deposition), while only 25–30% originates from the external medium (seawater carbon pool). These results are in agreement with the observation that metabolic CO(2) production in the light is at least six times greater than is required for calcification. This source is dependent on carbonic anhydrase activity because it is sensitive to ethoxyzolamide. Seawater DIC is transferred from the external medium to the coral skeleton by two different pathways: from sea water to the coelenteron, the passive paracellular pathway is largely sufficient, while a DIDS-sensitive transcellular pathway appears to mediate the flux across calicoblastic cells. Irrespective of the source, an anion exchanger performs the secretion of DIC at the site of calcification. Furthermore, a fourfold light-enhanced calcification of Stylophora pistillata microcolonies was measured. This stimulation was only effective after a lag of 10 min. These results are discussed in the context of light-enhanced calcification. Characterisation of the DIC supply for symbiotic dinoflagellate photosynthesis demonstrated the presence of a DIC pool within the tissues. The size of this pool was dependent on the lighting conditions, since it increased 39-fold after 3 h of illumination. Passive DIC equilibration through oral tissues between sea water and the coelenteric cavity is insufficient to supply this DIC pool, suggesting that there is an active transepithelial absorption of inorganic carbon sensitive to DIDS, ethoxyzolamide and iodide. These results confirm the presence of CO(2)-concentrating mechanisms in coral cells. The tissue pool is not, however, used as a source for calcification since no significant lag phase in the incorporation of external seawater DIC was measured.

1998 ◽  
Vol 76 (6) ◽  
pp. 1072-1083 ◽  
Author(s):  
Yusuke Matsuda ◽  
Gale G. Bozzo ◽  
Brian Colman

Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 533-543 ◽  
Author(s):  
Sheila Griffin ◽  
Ellen R M Druffel

Radiocarbon measurements in deep-sea corals from the Little Bahama Bank were used to determine the source of carbon to the skeletal matrices. Specimens of Lophelia, Gerardia, Paragorgia johnsoni and Corallium noibe were sectioned according to visible growth rings and/or stem diameter. We determined that the source of carbon to the corals accreting organic matter was primarily from surface-derived sources. Those corals that accrete a calcerous skeleton were found to obtain their carbon solely from dissolved inorganic carbon (DIC) in sea water from the depth at which the corals grew. These results, in conjunction with growth-rate studies using short-lived radioisotopes, support the use of deep-sea corals to reconstruct time histories of transient and non-transient tracers at depth in the oceans.


1990 ◽  
Vol 68 (6) ◽  
pp. 1291-1302 ◽  
Author(s):  
Anthony G. Miller ◽  
George S. Espie ◽  
David T. Canvin

Cyanobacteria grown at air levels of CO2, or lower, have a very high photosynthetic affinity for CO2. For ceils grown in carbon-limited chemostats at pH 9.6, the K0.5 (CO2) for whole cell CO2 fixation is about 3 nM. This is in spite of a K0.5 (CO2) for cyanobacterial ribulose bisphosphate carboxylase/oxygenase of about 200 μM. It is now clear that cyanobacteria can photosynthesize at very low CO2 concentrations because they raise the CO2 concentration dramatically around the carboxylase. This rise in the intracellular CO2 concentration involves the active transport of HCO3− and CO2, perhaps by separate transport systems. The transport of HCO3− often requires millimolar levels of Na+, and this provides a ready means of initiating HCO3− transport. The active transport of CO2 requires only micromolar levels of Na+. In the rather dense cell suspensions used in transport studies the extent of CO2 uptake is often limited by the rate at which CO2 can be formed from the HCO3− in the medium. The addition of carbonic anhydrase relieves this kinetic limitation on CO2 transport. The active transport of CO2 can be selectively inhibited by the structural analog carbon oxysulfide (COS). When HCO3− transport is allowed in the presence of COS there is a substantial net leakage of CO2 from the cells. This leaked CO2 results from the intracellular dehydration of the accumulated HCO3−. This CO2 is normally scavenged by the active CO2 pump. If cells are allowed to transport H13C18O18O18O− for 5 s and if CO2 transport is suddenly quenched by the addition of COS, then a rapid leakage of 13C16O16O occurs. If the rapidly released CO2 was actually present in the cells before the addition of the COS, then the intracellular CO2 concentration would have been about 0.6 mM. Not only is this a high concentration, but since the leaked CO2 was completely depleted of the initial 18O, it must have been in rapid equilibrium with the total dissolved inorganic carbon within the cells. Cells grown on high levels of inorganic carbon, either as CO2 or HCO3−, lack the active HCO3− system but still retain a capacity, albeit reduced, for CO2 transport. Cyanobacteria seem to adjust their complement of inorganic carbon transport systems so that the K0.5 for transport is close to the inorganic carbon concentration of the growth medium.


Sign in / Sign up

Export Citation Format

Share Document