scholarly journals Sources of Carbon to Deep-Sea Corals

Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 533-543 ◽  
Author(s):  
Sheila Griffin ◽  
Ellen R M Druffel

Radiocarbon measurements in deep-sea corals from the Little Bahama Bank were used to determine the source of carbon to the skeletal matrices. Specimens of Lophelia, Gerardia, Paragorgia johnsoni and Corallium noibe were sectioned according to visible growth rings and/or stem diameter. We determined that the source of carbon to the corals accreting organic matter was primarily from surface-derived sources. Those corals that accrete a calcerous skeleton were found to obtain their carbon solely from dissolved inorganic carbon (DIC) in sea water from the depth at which the corals grew. These results, in conjunction with growth-rate studies using short-lived radioisotopes, support the use of deep-sea corals to reconstruct time histories of transient and non-transient tracers at depth in the oceans.

Radiocarbon ◽  
2002 ◽  
Vol 44 (2) ◽  
pp. 567-580 ◽  
Author(s):  
Jess F Adkins ◽  
Shelia Griffin ◽  
Michaele Kashgarian ◽  
Hai Cheng ◽  
E R M Druffel ◽  
...  

Deep-sea corals are a promising new archive of paleoclimate. Coupled radiocarbon and U-series dates allow 14C to be used as a tracer of ocean circulation rate in the same manner as it is used in the modern ocean. Diagenetic alteration of coral skeletons on the seafloor requires a thorough cleaning of contaminating phases of carbon. In addition, 10% of the coral must be chemically leached prior to dissolution to remove adsorbed modern CO2. A survey of modern samples from the full δ14C gradient in the deep ocean demonstrates that the coralline CaCO3 records the radiocarbon value of the dissolved inorganic carbon.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 397-407 ◽  
Author(s):  
Ellen R M Druffel ◽  
Susumu Honjo ◽  
Sheila Griffin ◽  
C S Wong

Carbon isotope ratios were measured in organic and inorganic carbon of settling particulate matter collected with a sediment trap at Ocean Station “P” in the Gulf of Alaska from March to October, 1983. Dissolved inorganic carbon (DIG) in surface sea water collected during two different seasons in 1984 were analyzed using large gas proportional counters and revealed a minimum seasonal Δ14C variation of 14‰. Results show that the Δ14C of calcium carbonate scdimenting to the deep sea is the same as that measured in surface water DIC. In contrast, particulate organic carbon (POC) had significantly higher Δ14C values (by 25–70‰) than that in surface water DIC. Also, the δ13C of the POC was markedly lower than previously reported values from other trap stations and marine particulate matter in general. Results from this study suggest that a significant amount of the POC settling to the deep sea at this pelagic station is of terrestrial origin, not strictly of marine origin as had previously been believed.


Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Naohiko Ohkouchi ◽  
Timothy I Eglinton ◽  
John M Hayes

We have measured the radiocarbon contents of individual, solvent-extractable, short-chain (C14, C16, and C18) fatty acids isolated from Ross Sea surface sediments. The corresponding 14C ages are equivalent to that of the post-bomb dissolved inorganic carbon (DIC) reservoir. Moreover, molecular 14C variations in surficial (upper 15 cm) sediments indicate that these compounds may prove useful for reconstructing chronologies of Antarctic margin sediments containing uncertain (and potentially variable) quantities of relict organic carbon. A preliminary molecular 14C chronology suggests that the accumulation rate of relict organic matter has not changed during the last 500 14C yr. The focus of this study is to determine the validity of compound-specific 14C analysis as a technique for reconstructing chronologies of Antarctic margin sediments.


2019 ◽  
Vol 116 (38) ◽  
pp. 18874-18879 ◽  
Author(s):  
Paul F. Hoffman ◽  
Kelsey G. Lamothe

Carbonate sediments of nonglacial Cryogenian (659 to 649 Ma) and early Ediacaran (635 to 590 Ma) age exhibit large positive and negative δ13Ccarb excursions in a shallow-water marine platform in northern Namibia. The same excursions are recorded in fringing deep-sea fans and in carbonate platforms on other paleocontinents. However, coeval carbonates in the upper foreslope of the Namibian platform, and to a lesser extent in the outermost platform, have relatively uniform δ13Ccarb compositions compatible with dissolved inorganic carbon (DIC) in the modern ocean. We attribute the uniform values to fluid-buffered diagenesis that occurred where seawater invaded the sediment in response to geothermal porewater convection. This attribution, which is testable with paired Ca and Mg isotopes, implies that large δ13Ccarb excursions observed in Neoproterozoic platforms, while sedimentary in origin, do not reflect the composition of ancient open-ocean DIC.


2008 ◽  
Vol 1 (1) ◽  
pp. 17-51 ◽  
Author(s):  
G. Shaffer ◽  
S. Malskær Olsen ◽  
J. O. Pepke Pedersen

Abstract. A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs. silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 Gt C input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2004 ◽  
Vol 92 (1-4) ◽  
pp. 353-366 ◽  
Author(s):  
Peter A. Raymond ◽  
James E. Bauer ◽  
Nina F. Caraco ◽  
Jonathan J. Cole ◽  
Brett Longworth ◽  
...  

2005 ◽  
Vol 62 (11) ◽  
pp. 2640-2648 ◽  
Author(s):  
Elvira Pulido-Villena ◽  
Isabel Reche ◽  
Rafael Morales-Baquero

The carbon isotopic signature (δ13C) of dissolved inorganic carbon and food web components was examined in two high mountain lakes. Río Seco Lake is partially surrounded by alpine meadows and has temporal inlets, whereas La Caldera Lake is located on rocky terrain and does not receive inputs from runoff. We assessed whether these contrasting catchments involve differences in the isotopic signature of the food web components and then in the reliance on terrestrial carbon. The δ13C of dissolved inorganic carbon was not significantly different between lakes and reflected an atmospheric gas exchange origin. Unexpectedly, bulk particulate organic matter showed enriched δ13C values in both lakes, suggesting a terrestrial vegetation influence. Bulk particulate organic matter was exploited mostly by the cladoceran Daphnia pulicaria, whereas the copepod Mixodiaptomus laciniatus was 13C depleted relative to particulate organic matter, indicating a selective feeding on an isotopically lighter source, likely phytoplankton. The results obtained show that, despite contrasting catchments, the food web of both lakes might be partially supported by terrestrial carbon for which utilization is species specific.


Sign in / Sign up

Export Citation Format

Share Document