scholarly journals Physiological consequences of Arctic sea ice loss on large marine carnivores: unique responses by polar bears and narwhals

2021 ◽  
Vol 224 (Suppl 1) ◽  
pp. jeb228049
Author(s):  
Anthony M. Pagano ◽  
Terrie M. Williams

ABSTRACTRapid environmental changes in the Arctic are threatening the survival of marine species that rely on the predictable presence of the sea ice. Two Arctic marine mammal specialists, the polar bear (Ursus maritimus) and narwhal (Monodon monoceros), appear especially vulnerable to the speed and capriciousness of sea ice deterioration as a consequence of their unique hunting behaviors and diet, as well as their physiological adaptations for slow-aerobic exercise. These intrinsic characteristics limit the ability of these species to respond to extrinsic threats associated with environmental change and increased industrial activity in a warming Arctic. In assessing how sea ice loss may differentially affect polar bears that hunt on the ice surface and narwhals that hunt at extreme depths below, we found that major ice loss translated into elevated locomotor costs that range from 3- to 4-fold greater than expected for both species. For polar bears this instigates an energy imbalance from the combined effects of reduced caloric intake and increased energy expenditure. For narwhals, high locomotor costs during diving increase the risk of ice entrapment due to the unreliability of breathing holes. These species-specific physiological constraints and extreme reliance on the polar sea ice conspire to make these two marine mammal specialists sentinels of climate change within the Arctic marine ecosystem that may foreshadow rapid changes to the marine ecosystem.

2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


2021 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>In this project we analyze artwork and recorded statements of 5<sup>th</sup> grade students from the community of Utqiaġvik, Alaska, who participated in a science-art outreach activity. The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students each at Fred Ipalook Elementary. The predominantly Inupiat people of Utqiaġvik are among those who will be most impacted by climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change, the teachers reported that the subject is not generally covered in the elementary school curriculum.</p><p>The scientist and the local outreach specialist gave a short presentation about sea ice and climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure. We then showed the students a large poster of historical and projected sea ice decline, and asked the students to help us fill in the white space beneath the lines. The artist led the children in making small paintings that represent things that are important to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever they wanted). We returned to the class later that week and had each student briefly introduce themselves and their painting, and place it on the large graph of sea ice decline, which included the dire predictions of the RCP8.5 scenario. Then we added the more hopeful RCP2.6 scenario to end on a positive note.</p><p>Common themes expressed in the students’ artwork included subsistence hunting, other aspects of traditional Inupiat culture, nature and family. Modern themes such as sports and Pokémon were also common. The students reacted to the topic of climate change with pictures of whales, polar bears and other animals, and captions such as “Save the world/ice/animals.” There were several paintings showing unsuccessful hunts for whales or seals. Some students displayed an understanding of ecosystem science in their recorded statements. For example, a student who painted the sun and another who painted a krill both succinctly described energy flow in food webs that support the production of whales (for example, “I drew krill because without krill there wouldn’t be whales”). Some of the students described the consequences of sea ice loss to local wildlife with devastating succinctness (sea ice is disappearing and polar bears will go extinct). The overall sense was that the children had a strong grasp of the potential consequences of climate change to their region and way of life.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fanny Cusset ◽  
Jérôme Fort ◽  
Mark Mallory ◽  
Birgit Braune ◽  
Philippe Massicotte ◽  
...  

Abstract In the Arctic, sea-ice plays a central role in the functioning of marine food webs and its rapid shrinking has large effects on the biota. It is thus crucial to assess the importance of sea-ice and ice-derived resources to Arctic marine species. Here, we used a multi-biomarker approach combining Highly Branched Isoprenoids (HBIs) with δ13C and δ15N to evaluate how much Arctic seabirds rely on sea-ice derived resources during the pre-laying period, and if changes in sea-ice extent and duration affect their investment in reproduction. Eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) were collected in the Canadian Arctic during four years of highly contrasting ice conditions, and analysed for HBIs, isotopic (carbon and nitrogen) and energetic composition. Murres heavily relied on ice-associated prey, and sea-ice was beneficial for this species which produced larger and more energy-dense eggs during icier years. In contrast, fulmars did not exhibit any clear association with sympagic communities and were not impacted by changes in sea ice. Murres, like other species more constrained in their response to sea-ice variations, therefore appear more sensitive to changes and may become the losers of future climate shifts in the Arctic, unlike more resilient species such as fulmars.


Polar environments are characterized by unique physical and chemical conditions for the development of life. Low temperatures and the seasonality of light create one of the most extreme habitats on Earth. The Arctic sea ice cover not only acts as an insulator for heat and energy exchange processes between ocean and atmosphere but also serves as a unique habitat for a specialized community of organisms, consisting of bacteria, algae, protozoa and metazoa. The primary production of sea ice algae may play a crucial role in the life cycle of planktonic and benthic organisms. Thus, a reduction of the sea ice extent due to environmental changes will influence the structure and processes of communities living inside the ice and pelagic realms.


2020 ◽  
Vol 287 (1940) ◽  
pp. 20202126
Author(s):  
David J. Yurkowski ◽  
Thomas A. Brown ◽  
Paul J. Blanchfield ◽  
Steven H. Ferguson

Climate change is altering the biogeochemical and physical characteristics of the Arctic marine environment, which impacts sea ice algal and phytoplankton bloom dynamics and the vertical transport of these carbon sources to benthic communities. Little is known about whether the contribution of sea ice-derived carbon to benthic fauna and nitrogen cycling has changed over multiple decades in concert with receding sea ice. We combined compound-specific stable isotope analysis of amino acids with highly branched isoprenoid diatom lipid biomarkers using archived (1982–2016) tissue of benthivorous Atlantic walrus to examine temporal trends of sea ice-derived carbon, nitrogen isotope baseline and trophic position of Atlantic walrus at high- and mid-latitudes in the Canadian Arctic. Associated with an 18% sea ice decline in the mid-Arctic, sea ice-derived carbon contribution to Atlantic walrus decreased by 75% suggesting a strong decoupling of sea ice-benthic habitats. By contrast, a nearly exclusive amount of sea ice-derived carbon was maintained in high-Arctic Atlantic walrus (98% in 1996 and 89% in 2006) despite a similar percentage in sea ice reduction. Nitrogen isotope baseline or the trophic position of Atlantic walrus did not change over time at either location. These findings indicate latitudinal differences in the restructuring of carbon energy sources used by Atlantic walrus and their benthic prey, and in turn a change in Arctic marine ecosystem functioning between sea ice–pelagic–benthic habitats.


2020 ◽  
Vol 639 ◽  
pp. 1-19 ◽  
Author(s):  
MA Blanchet ◽  
J Aars ◽  
M Andersen ◽  
H Routti

Polar bears Ursus maritimus are currently facing rapid environmental changes with loss of sea ice and shifts in their prey distribution. Two distinct ecotypes exist in the Barents Sea, where sea ice is decreasing at the highest rate in the Arctic. Coastal bears remain within the Archipelago of Svalbard year-round, whereas offshore bears follow the marginal ice zone (MIZ). We explored these 2 ecotypes’ habitat use, activity and energy needs as well as seasonal variation within these parameters. During the period from 2011-2018, adult female polar bears were equipped with GPS collars and activity sensors (n = 84); 46 of these were equipped with conductivity switches to record aquatic behaviour. Offshore bears travelled longer distances at a higher speed on land and at sea away from land and had a higher activity rate compared to coastal bears. This translated into higher overall energy expenditure. Offshore bears also undertook more distant and energetically costly trips from land to the MIZ, swimming in open water. Both ecotypes showed similar seasonal patterns of activity and movement consistent with their life history linked to sea ice phenology. Despite higher energy expenditure, the offshore strategy seemed to be as profitable as the coastal one as females had marginally better spring body condition, likely due to their specialized high caloric diet of seals throughout the year. However, both ecotypes are currently experiencing habitat changes. Future studies should aim to predict how rapidly declining sea ice in the Barents Sea may challenge polar bears energetically during the coming decades.


2021 ◽  
Author(s):  
Myriel Vredenborg ◽  
Benjamin Rabe ◽  
Sinhue Torres-Valdès

<p>The Arctic Ocean is undergoing remarkable environmental changes due to global warming. The rise in the Arctic near-surface air temperature during the past decades is more than twice as high as the global average, a phenomenon known as the “Arctic Amplification”. As a consequence the Arctic summer sea ice extent has decreased by more than 40 % in recent decades, and moreover a year-round sea ice loss in extent and thickness was recorded. By opening up of large areas formerly covered by sea ice, the exchange of heat, moisture and momentum between the ocean and the atmosphere intensified. This resulted in changes in the ocean circulation and the water masses impacting the marine ecosystem. We investigate these changes by using a large set of hydrographic and biogeochemical data of the entire Arctic Ocean. To better quantify the current changes in the Arctic ecosystem we will compare our observational data analysis with high-resolution biogeochemical atmosphere-ice-ocean model simulations.</p>


2018 ◽  
Vol 99 (1) ◽  
pp. 61-81 ◽  
Author(s):  
Albert Gabric ◽  
Patricia Matrai ◽  
Graham Jones ◽  
Julia Middleton

AbstractAccurate estimation of the climate sensitivity requires a better understanding of the nexus between polar marine ecosystem responses to warming, changes in sea ice extent, and emissions of marine biogenic aerosol (MBA). Sea ice brine channels contain very high concentrations of MBA precursors that, once ventilated, have the potential to alter cloud microphysical properties, such as cloud droplet number, and the regional radiative energy balance. In contrast to temperate latitudes, where the pelagic phytoplankton are major sources of MBAs, the seasonal sea ice dynamic plays a key role in determining MBA concentration in both the Arctic and Antarctic. We review the current knowledge of MBA sources and the link between ice melt and emissions of aerosol precursors in the polar oceans. We illustrate the processes by examining decadal-scale time series in various satellite-derived parameters such as aerosol optical depth (AOD), sea ice extent, and phytoplankton biomass in the sea ice zones of both hemispheres. The sharpest gradients in aerosol indicators occur during the spring period of ice melt. In sea ice–covered waters, the peak in AOD occurs well before the annual maximum in biomass in both hemispheres. The results provide strong evidence that suggests seasonal changes in sea ice and ocean biology are key drivers of the polar aerosol cycle. The positive trend in annual-mean Antarctic sea ice extent is now almost one-third of the magnitude of the annual-mean decrease in Arctic sea ice, suggesting the potential for different patterns of aerosol emissions in the future.


2015 ◽  
Vol 11 (11) ◽  
pp. 20150803 ◽  
Author(s):  
Charmain D. Hamilton ◽  
Christian Lydersen ◽  
Rolf A. Ims ◽  
Kit M. Kovacs

Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal ( Pusa hispida ), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a ‘tipping point’, subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species.


2020 ◽  
Author(s):  
Jeremy Wilkinson ◽  
Martin Doble ◽  
Lovro Valcic ◽  
Gaelle Veyssiere ◽  
Sylvia Cole ◽  
...  

Abstract As the Arctic Ocean transitions into a seasonally ice-covered ocean, the processes that govern the sea ice melt cycle will undergo a fundamental shift. The summer melt cycle passes through several stages, such as snowmelt, meltpond formation and drainage, and basal melting; normally with surface melt processes occurring well before basal melt. Monitoring of atmospheric, sea ice and oceanographic properties from autonomous buoys deployed across the Beaufort Sea, combined with targeted satellite imagery, reveal a fundamental restructuring of these melt processes within the seasonal ice zone – where basal melt occurs before surface melt. We find this seemingly unremarkable change accelerates the basal melting of sea ice by ten-fold, as well as transforming the timing and flux of freshwater and heat into the upper-ocean. These processes play a pivotal role in determining upper-ocean stratification, and when combined with a modification of the under-ice light field, it could impact marine ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document