scholarly journals Polarization contrasts and their effect on the gaze stabilisation of crustaceans

2021 ◽  
pp. jeb.229898
Author(s):  
Christian Drerup ◽  
Martin J. How

Many animals go to great lengths to stabilise their eyes relative to the visual scene and do so to enhance the localisation of moving objects and to functionally partition the visual system relative to the outside world. An important cue that is used to control these stabilisation movements is contrast within the visual surround. Previous studies on insects, spiders and fish have shown that gaze stabilisation is achromatic (= ‘colour-blind’), meaning that chromatic contrast alone (in the absence of apparent intensity contrasts) does not contribute to gaze stabilisation. Following the assumption that polarization vision is analogous in many ways to colour vision, the present study shows that five different crustacean species do not use the polarization of light alone for gaze stabilisation, despite being able to use this modality for detecting predator-like objects. This work therefore suggests that the gaze stabilisation in many crustaceans cannot be elicited by the polarization of light alone.

Perception ◽  
2021 ◽  
pp. 030100662199149
Author(s):  
Patrick Cavanagh

The descriptions of surfaces, objects, and events computed by visual processes are not solely for consumption in the visual system but are meant to be passed on to other brain centers. Clearly, the description of the visual scene cannot be sent in its entirety, like a picture or movie, to other centers, as that would require that each of them have their own visual system to decode the description. Some very compressed, annotated, or labeled version must be constructed that can be passed on in a format that other centers—memory, language, planning—can understand. If this is a “visual language,” what is its grammar? In a first pass, we see, among other things, differences in processing of visual “nouns,” visual “verbs,” and visual “prepositions.” Then we look at recursion and errors of visual grammar. Finally, the possibility of a visual language also raises the question of the acquisition of its grammar from the visual environment and the chance that this acquisition process was borrowed and adapted for spoken language.


Author(s):  
Mark Edwards ◽  
Stephanie C. Goodhew ◽  
David R. Badcock

AbstractThe visual system uses parallel pathways to process information. However, an ongoing debate centers on the extent to which the pathways from the retina, via the Lateral Geniculate nucleus to the visual cortex, process distinct aspects of the visual scene and, if they do, can stimuli in the laboratory be used to selectively drive them. These questions are important for a number of reasons, including that some pathologies are thought to be associated with impaired functioning of one of these pathways and certain cognitive functions have been preferentially linked to specific pathways. Here we examine the two main pathways that have been the focus of this debate: the magnocellular and parvocellular pathways. Specifically, we review the results of electrophysiological and lesion studies that have investigated their properties and conclude that while there is substantial overlap in the type of information that they process, it is possible to identify aspects of visual information that are predominantly processed by either the magnocellular or parvocellular pathway. We then discuss the types of visual stimuli that can be used to preferentially drive these pathways.


2020 ◽  
pp. jeb.233098
Author(s):  
Fanny de Busserolles ◽  
Fabio Cortesi ◽  
Lily Fogg ◽  
Sara M. Stieb ◽  
Martin Luehrmann ◽  
...  

The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim-light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.


2001 ◽  
Vol 13 (6) ◽  
pp. 1243-1253 ◽  
Author(s):  
Rajesh P. N. Rao ◽  
David M. Eagleman ◽  
Terrence J. Sejnowski

When a flash is aligned with a moving object, subjects perceive the flash to lag behind the moving object. Two different models have been proposed to explain this “flash-lag” effect. In the motion extrapolation model, the visual system extrapolates the location of the moving object to counteract neural propagation delays, whereas in the latency difference model, it is hypothesized that moving objects are processed and perceived more quickly than flashed objects. However, recent psychophysical experiments suggest that neither of these interpretations is feasible (Eagleman & Sejnowski, 2000a, 2000b, 2000c), hypothesizing instead that the visual system uses data from the future of an event before committing to an interpretation. We formalize this idea in terms of the statistical framework of optimal smoothing and show that a model based on smoothing accounts for the shape of psychometric curves from a flash-lag experiment involving random reversals of motion direction. The smoothing model demonstrates how the visual system may enhance perceptual accuracy by relying not only on data from the past but also on data collected from the immediate future of an event.


Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 573-588 ◽  
Author(s):  
Jacky Emmerton

The ability of pigeons to discriminate complex motion patterns was investigated with the aid of moving Lissajous figures. The pigeons successfully learned to differentiate two successively presented cyclic trajectories of a single moving dot. This suggests that they can recognize a movement Gestalt when information about shape is minimal. They also quickly learned a new discrimination between moving-outline stimuli with repetitively changing contour patterns. Contrasting results were obtained when the dot or outline stimuli were axis-rotated through 90°. Rotational invariance of pattern discrimination was clearly demonstrated only when moving contours were visible. Nevertheless, pigeons could discriminate the axis-orientation of a moving-dot or moving-outline pattern when trained to do so. Discrimination did not seem to depend on single parameters of motion but rather on the recognition of a temporally integrated movement Gestalt. The visual system of pigeons, as well as that of humans, may be well adapted to recognize the types of oscillatory movements that represent components of the motor behaviour shown by many living organisms.


2014 ◽  
Vol 369 (1636) ◽  
pp. 20130032 ◽  
Author(s):  
Thomas W. Cronin ◽  
Michael J. Bok ◽  
N. Justin Marshall ◽  
Roy L. Caldwell

Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red.


2019 ◽  
Author(s):  
Jack Lindsey ◽  
Samuel A. Ocko ◽  
Surya Ganguli ◽  
Stephane Deny

AbstractThe vertebrate visual system is hierarchically organized to process visual information in successive stages. Neural representations vary drastically across the first stages of visual processing: at the output of the retina, ganglion cell receptive fields (RFs) exhibit a clear antagonistic center-surround structure, whereas in the primary visual cortex (V1), typical RFs are sharply tuned to a precise orientation. There is currently no unified theory explaining these differences in representations across layers. Here, using a deep convolutional neural network trained on image recognition as a model of the visual system, we show that such differences in representation can emerge as a direct consequence of different neural resource constraints on the retinal and cortical networks, and for the first time we find a single model from which both geometries spontaneously emerge at the appropriate stages of visual processing. The key constraint is a reduced number of neurons at the retinal output, consistent with the anatomy of the optic nerve as a stringent bottleneck. Second, we find that, for simple downstream cortical networks, visual representations at the retinal output emerge as nonlinear and lossy feature detectors, whereas they emerge as linear and faithful encoders of the visual scene for more complex cortical networks. This result predicts that the retinas of small vertebrates (e.g. salamander, frog) should perform sophisticated nonlinear computations, extracting features directly relevant to behavior, whereas retinas of large animals such as primates should mostly encode the visual scene linearly and respond to a much broader range of stimuli. These predictions could reconcile the two seemingly incompatible views of the retina as either performing feature extraction or efficient coding of natural scenes, by suggesting that all vertebrates lie on a spectrum between these two objectives, depending on the degree of neural resources allocated to their visual system.


2001 ◽  
Vol 204 (9) ◽  
pp. 1559-1575 ◽  
Author(s):  
L.J. Fleishman ◽  
M. Persons

Anoline lizards communicate with visual displays in which they open and close a colourful throat fan called the dewlap. We used a visual fixation reflex as an assay to test the effects of stimulus versus background chromatic and brightness contrast on the probability of detecting a moving coloured (i.e. dewlap-like) stimulus in Anolis cristatellus. The probability of stimulus detection depended on two additive visual-system channels, one responding to brightness contrast and one responding to chromatic contrast, independent of brightness. The brightness channel was influenced only by wavelengths longer than 450nm and probably received input only from middle- and/or long-wavelength photoreceptors. The chromatic contrast channel appeared to receive input from three, or possibly four, different classes of cone in the anoline retina, including one with peak sensitivity in the ultraviolet. We developed a multi-linear regression equation that described most of the results of this study to a reasonable degree of accuracy. In the future, this equation could be used to predict the relative visibility of different-coloured stimuli in different habitat light conditions, which should be very useful for testing hypotheses that attempt to relate habitat light conditions and visual-system response to the evolution of signal design.


Sign in / Sign up

Export Citation Format

Share Document