scholarly journals Correction: Navigating under sea ice promotes rapid maturation of diving physiology and performance in beluga whales

2022 ◽  
Vol 225 (1) ◽  
Author(s):  
Shawn R. Noren ◽  
Robert Suydam
ARCTIC ◽  
2018 ◽  
Vol 71 (2) ◽  
Author(s):  
Janet T. Clarke ◽  
Megan C. Ferguson ◽  
Amy L. Willoughby ◽  
Amelia A. Brower

We analyzed data from line-transect aerial surveys for marine mammals conducted in the western Beaufort Sea (shore to 72˚ N, 140˚–157˚ W) from July to October of 2009–16 to investigate the distribution, behaviors, sighting rates, and habitat use preferences of bowhead and beluga whales. The habitat use data allowed for direct comparison with data collected in the same area from 1982 to 1991. Both species are ice-adapted, migrating through leads in sea ice in spring, and are seasonal inhabitants of the western Beaufort Sea during summer and fall. From 2009 to 2016, bowheads were seen in all survey months, with the highest overall sighting rate (whales per km) in August. Bowhead sighting rates were highest in the whales’ preferred habitats: outer shelf habitat (51–200 m depth) in July and inner shelf-shallow habitat (≤ 20 m depth) in August, September, and October. Beluga whales were also seen in all survey months, with highest overall sighting rate in July. Beluga whales were overwhelmingly associated with continental slope habitat (201–2000 m depth) in all months. Bowhead distribution and depth preferences in summer months of 2009–16 differed from those observed in 1982–91, when bowheads were not seen during limited survey effort in July and preferred outer continental shelf habitat in August. These differences indicate that bowhead whale preference for shallow shelf habitat now occurs earlier in summer than it used to. Beluga distribution and depth preference remained similar between 1982–91 and 2009–16, with strong preference for continental slope during both periods. Differences in sea ice cover habitat association for both species are likely due more to the relative lack of sea ice in recent years compared to the earlier period than to shifts in habitat preference. Habitat partitioning between bowhead and beluga whales in the western Beaufort Sea remained evident except in July, when both species used continental slope habitat. In July – October 2009–16, the distribution, sighting rates, and behavior of both bowheads and belugas in the western Beaufort showed considerable interannual variation, which underscores the importance of annual sampling to accurate records of the complex western Beaufort Sea ecosystem.


2020 ◽  
Author(s):  
Erica Webb ◽  
Ben Wright ◽  
Marco Meloni ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community. </p><p>Since May 2019, the CryoSat ice products are generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). A reprocessing campaign is currently underway to reprocess the full mission dataset (July 2010 – May 2019) to Baseline-D.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this new Baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present).</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio VEGA UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


2017 ◽  
Vol 62 (4) ◽  
pp. 1606-1619 ◽  
Author(s):  
T. A. Brown ◽  
E. Chrystal ◽  
S. H. Ferguson ◽  
D. J. Yurkowski ◽  
C. Watt ◽  
...  

2021 ◽  
Author(s):  
Erica Webb ◽  
Jenny Marsh ◽  
Laura Benzan Valette ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community.</p><p>Since May 2019, the CryoSat ice products have been generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). The Baseline-D reprocessing campaign completed in May 2020, and the full mission Baseline-D dataset is now available to users (July 2010 – present). The next major processor upgrade, Baseline-E, is already under development and following testing and refinement is anticipated to be operational in Q3 2021.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present). Preparations are underway for the next major processor upgrade, Baseline-D.</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the IDEAS-QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


2016 ◽  
Vol 12 (11) ◽  
pp. 20160404 ◽  
Author(s):  
Greg O'Corry-Crowe ◽  
Andrew R. Mahoney ◽  
Robert Suydam ◽  
Lori Quakenbush ◽  
Alex Whiting ◽  
...  

There is increasing concern over how Arctic fauna will adapt to climate related changes in sea-ice. We used long-term sighting and genetic data on beluga whales ( Delphinapterus leucas ) in conjunction with multi-decadal patterns of sea-ice in the Pacific Arctic to investigate the influence of sea-ice on spring migration and summer residency patterns. Substantial variations in sea-ice conditions were detected across seasons, years and sub-regions, revealing ice–ocean dynamics more complex than Arctic-wide trends suggest. This variation contrasted with a highly consistent pattern of migration and residency by several populations, indicating that belugas can accommodate widely varying sea-ice conditions to perpetuate philopatry to coastal migration destinations. However, a number of anomalous migration and residency events were detected and coincided with anomalous ice years, and in one case with an increase in killer whale ( Orcinus orca ) sightings and reported predation on beluga whales. The behavioural shifts were likely driven by changing sea-ice and associated changes in resource dispersion and predation risk. Continued reductions in sea-ice may result in increased predation at key aggregation areas and shifts in beluga whale behaviour with implications for population viability, ecosystem structure and the subsistence cultures that rely on them.


2021 ◽  
Vol 9 (8) ◽  
pp. 830
Author(s):  
Lars Chresten Lund-Hansen ◽  
Michael Bjerg-Nielsen ◽  
Tanja Stratmann ◽  
Ian Hawes ◽  
Brian K. Sorrell

Upwelling and downwelling spectral (320–920 nm) distributions and photosynthetic active radiation (PAR) intensities were measured below a first-year land-fast sea ice in a western Greenland fjord with and without a snow cover. Time-series of surface upwelling PAR, downwelling PAR, and under-ice PAR were also obtained. Spectral distributions of upwelling and downwelling irradiances were similar except for reduced intensities in the UV, the red, and NIR parts of the spectrum when the ice was snow-covered. Upwelling PAR amounted to about 10% of downwelling intensities, giving 5.1 µmol photons m−2 s−1 at the bottom of the ice with a snow cover and 8.2 µmol photons m−2 s−1 without. PAR partitioning analyses showed that the upwelling was related to scattering by suspended particles in the water column. A snow melt increased under-ice daily maximum downwelling PAR from 50 to 180 µmol photons m−2 s−1 and overall under-ice PAR of 55 and 198 µmol photons m−2 s−1 with 10% upwelling. It is concluded that upwelling PAR below sea ice might be an important factor regarding sea ice algae photophysiology and performance with a 10% higher PAR; specifically when PAR > Ek the light saturation point of the sea ice algae.


2010 ◽  
Vol 29 (2) ◽  
pp. 198-208 ◽  
Author(s):  
M.P. Heide-Jørgensen ◽  
K.L. Laidre ◽  
D. Borchers ◽  
T.A. Marques ◽  
H. Stern ◽  
...  

2016 ◽  
Vol 23 (6) ◽  
pp. 2206-2217 ◽  
Author(s):  
Donna D. W. Hauser ◽  
Kristin L. Laidre ◽  
Kathleen M. Stafford ◽  
Harry L. Stern ◽  
Robert S. Suydam ◽  
...  

2014 ◽  
Vol 179 (4) ◽  
pp. 113-119
Author(s):  
Denis I. Litovka ◽  
Ludmila N. Khitzova

New eco-ethological data on the Anadyr stock of beluga whales are presented based on 14-year (2000-2013) studies by methods of satellite tracking telemetry, multi-spectral aerial surveys and genetic analysis, as well as traditional and ecosystem-based approaches. Possible factors of the separate stock formation in the Anadyr Gulf are discussed, as geographic isolation, environmental conditions, foraging resources, elimination of the beluga whales, and biological isolation (on the results of genetic analysis). The beluga whales are well-adapted to oceanographic conditions and ice regime of the Arctic waters that is realized in their relationship with edge of the sea ice, ability to live in both salt and fresh waters (they enter rivers), and versatility in feeding. Their ice-associating, high sociality, and white protective coloration provide protection against killer whales and other predators and their eury-halinity allows to expand the feeding grounds both to the sea and rivers and hunt for both freshwater, anadromous and marine prey. The food spectrum of beluga whales in the Anadyr estuary is very wide and includes 12 fish species and 1 crustacean species. In the summer-autumn season, the salmons are the most significant part of the diet, as chum salmon Oncorhynchus keta , pink salmon O. gorbuscha and arctic char Salvelinus malma , whereas arctic smelt Osmerus mordax dentex , saffron cod Eleginus gracilis , sculpins Cottidae sp., anadyr whitefish Coregonus anaulorum , and siberian whitefish Coregonus sardinella are presented in the diet to a lesser extent. There is supposed on the base of episodic net surveys, that the beluga whales feeding in marine areas is more diverse, and the most important their prey in the sea are walleye pollock Theragra chalcogramma , pacific cod Gadus macrocephalus , flounders Pleuronectidae sp., sculpins Cottidae sp., capelin Mallotus villosus catervarius , polar cod Boreogadus saida , halibuts Pleuronectidae sp., stingrays Bathyraja , herring Clupeidae sp., and several species of decapod crustaceans Hyppolitidae sp. and Lithodidae sp. Natural enemies of beluga whales are killer whale Orcinus orca , polar bear Ursus maritimus , and predatory form of pacific walrus Odobenus rosmarus . Rather large number of beluga whales are eliminated by the sea ice, up to 80 animals annually, that exceeds in several times the aboriginal landings in Chukotka. Parasitic fauna of the beluga whale is still unclear and requires special investigations; the cases of epizooty are unknown in the Anadyr Gulf. Philopatry is proper to the Anadyr beluga whales, with preference of the Anadyr estuary and the Anadyr Gulf as their habitats, that is explained by optimal for them environments and high food capacity. Unique adaptation of beluga whales to the environments of the Anadyr estuary is their ultrasonic vocalization in the high-turbidity waters. Genetic analysis shows a differentiated distribution of the beluga whales haplotypes in different areas of the North Pacific, so the stock of the Anadyr Gulf is significantly isolated in the post-glacial times. Low anthropogenic pressure on beluga whales in the Anadyr Gulf allows them to maintain their stock there.


Sign in / Sign up

Export Citation Format

Share Document