shallow habitat
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Johanna Medellín-Mora ◽  
Rubén Escribano ◽  
Andrea Corredor-Acosta ◽  
Pamela Hidalgo ◽  
Wolfgang Schneider

The subtropical gyres occupy approximately 40% of the surface of the Earth and are widely recognized as oligotrophic zones. Among them, the South Pacific subtropical gyre (SPSG) shows the lowest chlorophyll-a levels (0.02–0.04 μgL–1), the deepest nutricline (>200 m) and euphotic zone (∼160 m), and the lowest rates of nitrogen fixation. The zooplankton community is poorly known in the SPSG. We report a study focused on the composition and distribution of pelagic copepods within the gyre so as to uncover the diversity and habitat conditions of this special community. Therefore, during the austral spring of 2015, an oceanographic cruise was conducted across the eastern side of the SPSG. Physical and chemical variables were measured in the upper 1000 m, while zooplankton samples were collected by means of vertically stratified hauls using a multiple net sampler for five layers (0–800 m). Satellite data were also used to assess near-surface phytoplankton biomass (Chl-a) and physical-dynamics conditions during the cruise, and 121 species of copepods were identified, which belonged to five taxonomic orders, 24 families, and 50 genera. Calanoida and Cyclopoida were the most frequent orders, containing 57% and 38% of species, respectively, whereas Harpacticoida and Mormonilloida contained 2% of species each, and Siphonostomatoida contained 1% of species. The vertical distribution of copepods revealed an ecological zonation linked to a strongly stratified water column, such that three different vertical habitats were defined: shallow (0–200 m), intermediate (200–400 m), and deep (400–800 m). Both the abundance and diversity of copepods were greater in the shallow habitat and were strongly associated with water temperature, whereas copepods in the subsurface layers subsisted with relatively low oxygen waters (2–3 mL O2 L–1) and presumably originated at the Chilean upwelling zone, being transported offshore by mesoscale eddies. Furthermore, the analysis of species composition revealed a marked dominance of small-sized copepods, which may play a key role in nutrient recycling under an oligotrophic condition, as inferred from their mostly omnivorous feeding behavior. Our findings also suggested a potentially high endemism within the gyre, although basin-scale circulation and mesoscale eddies, traveling from the coastal upwelling zone and transporting plankton, can also influence the epipelagic fauna.


Geologija ◽  
2021 ◽  
Vol 64 (1) ◽  
pp. 65-80
Author(s):  
Aleksej MILOŠEVIĆ ◽  
Alexander S. ALEKSEEV ◽  
Elena ZAYTSEVA ◽  
Matevž NOVAK ◽  
Tea KOLAR-JURKOVŠEK ◽  
...  

The Olistostrome member of the Sana-Una Paleozoic complex of the Ljubija ore mine in Bosnia and Herzegovina contains limestone fragments of pebble to block size that have been examined paleontologically. The recovered conodont fauna of the first sample is characterized by the species Declinognathodus lateralis, Idiognathoides sulcatus sulcatus and Idiognathodus sp. confirming its mid-Bashkirian age. This report is the first on the occurrence of these taxa in the area. The second sample with chaetetid demosponges yields an abundant diversified microbiota consisting of cyanobacteria, algae and foraminifera. Chlorophyts are marked by the common siphonoclad occurrence of Donezella lutugini and D. lunaensis, whereas rhodophyts include rare representatives of Stacheia, Stacheoides, Pseudoungdarella and Masloviporidium. The presence of Asphaltinella horowitzi and Aphralysia carbonaria of unclear taxonomic position is also documented. Pseudostaffellids, eostaffellids and other foraminifera, mostly endothyrids are present. The examined associations of fossils point to the Bashkirian age of the primary rock that originated in a very shallow habitat most probably linked to a high-energy reef environment.


Earth ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 303-330
Author(s):  
Oliver Lucanus ◽  
Margaret Kalacska ◽  
J. Pablo Arroyo-Mora ◽  
Leandro Sousa ◽  
Lucélia Nobre Carvalho

Hydroelectric dams are a major threat to rivers in the Amazon. They are known to decrease river connectivity, alter aquatic habitats, and emit greenhouse gases such as carbon dioxide and methane. Multiscale remotely sensed data can be used to assess and monitor hydroelectric dams over time. We analyzed the Sinop dam on the Teles Pires river from high spatial resolution satellite imagery to determine the extent of land cover inundated by its reservoir, and subsequent methane emissions from TROPOMI S-5P data. For two case study areas, we generated 3D reconstructions of important endemic fish habitats from unmanned aerial vehicle photographs. We found the reservoir flooded 189 km2 (low water) to 215 km2 (high water) beyond the extent of the Teles Pires river, with 13–30 m tall forest (131.4 Mg/ha average AGB) the predominant flooded class. We further found the reservoir to be a source of methane enhancement in the region. The 3D model showed the shallow habitat had high complexity important for ichthyofauna diversity. The distinctive habitats of rheophile fishes, and of the unique species assemblage found in the tributaries have been permanently modified following inundation. Lastly, we illustrate immersive visualization options for both the satellite imagery and 3D products.


2021 ◽  
Vol 7 ◽  
Author(s):  
Liron Goren ◽  
Tal Idan ◽  
Sigal Shefer ◽  
Micha Ilan

Sponges have long been considered as “living hotels” due to the great diversity and abundance of other taxonomic groups often found in association with them. Sponges are the dominant components of benthic communities in the Levant Sea; and especially in the recently discovered mesophotic sponge grounds off the coast of Israel. However, almost no data exist regarding their associated macrofauna. The current study sought to identify the macrofauna associated with massive sponges along the Israeli Mediterranean coast; and to compare the role of sponges, as ecosystem engineers, or “living hotels,” in both the shallow-water and mesophotic habitats. Sixty-four massive sponge specimens, from 10 different species, were collected from shallow and mesophotic habitats by SCUBA diving and Remotely Operated Vehicle, respectively. Sponge volume was estimated, specimens were dissected, and the associated macrofauna were identified. Our results reveal that the sponges supported a diverse assemblage of associated macrofauna. A total of 61 associated taxa were found, including species reported for the first time in Israel. A clear, differentiation existed in the structure of the associated assemblage between the two habitats, which is mainly attributed to four species (two polychaetes, a crustacean, and a brittle star). The trophic composition remained stable across the two habitats. No correlation was found between sponge volume and the associated fauna community parameters. The highest richness of associated fauna was found in the mesophotic habitat, where sponge diversity is also higher. In contrast, a greater endobiont abundance and density were recorded in the shallow habitat, where massive sponges may be a limiting factor due to their lower richness and abundance. Our findings emphasize the importance of sponges as ecosystem engineers, and suggest that sponge diversity may be an important factor that contribute to benthic biodiversity in these regions.


2020 ◽  
Vol 7 ◽  
Author(s):  
Stephane Martinez ◽  
Yuval Kolodny ◽  
Eli Shemesh ◽  
Federica Scucchia ◽  
Reinat Nevo ◽  
...  

Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30–150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ15N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a, lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.


2020 ◽  
Vol 44 (1) ◽  
pp. 199-213 ◽  
Author(s):  
Brooke A. McIntyre ◽  
Erika E. McPhee-Shaw ◽  
Marco B. A. Hatch ◽  
Shawn M. Arellano

AbstractDispersal, retention, and population connectivity are impacted by current regime and the behaviors that drive larval distribution, so understanding both is key to informing restoration of native species like the Olympia oyster (Ostrea lurida) across its range in western North America. This study explores the relationships between several factors (temperature, [chl a], larval size, tidal stage, and estimated current speed) and Olympia oyster larval vertical distributions in Fidalgo Bay (48.4828, − 122.5811), a shallow, tidally flushed bay in the Salish Sea. Olympia oyster larvae collected from four depths over the tidal cycle from July 11–14, 2017, were ~ 20% deeper near slack tide and shallower during the faster parts of both ebb and flood, with a threshold for this transition around an estimated 25 cm s−1. This pattern does not suggest tidally timed migrations as has been shown in another population of Olympia oysters, nor can this pattern be totally explained by passive processes. Larvae did not cluster at depths with specific temperatures or [chl a] but there was a difference in larval size between surface and bottom waters, with older, larger larvae more common at the bottom. Fidalgo Bay does not exhibit two-way flow or strong vertical shear, so vertical distribution of larvae likely has little effect on transport in this system but might in other similarly shallow habitat areas with higher stratification that are target restoration sites in the Salish Sea. These results add to the growing number of studies that show location-specific differences in larval vertical distribution and behavior within taxa and underscore the importance of integrating local hydrodynamics into predictions of bivalve larval transport.


ARCTIC ◽  
2018 ◽  
Vol 71 (2) ◽  
Author(s):  
Janet T. Clarke ◽  
Megan C. Ferguson ◽  
Amy L. Willoughby ◽  
Amelia A. Brower

We analyzed data from line-transect aerial surveys for marine mammals conducted in the western Beaufort Sea (shore to 72˚ N, 140˚–157˚ W) from July to October of 2009–16 to investigate the distribution, behaviors, sighting rates, and habitat use preferences of bowhead and beluga whales. The habitat use data allowed for direct comparison with data collected in the same area from 1982 to 1991. Both species are ice-adapted, migrating through leads in sea ice in spring, and are seasonal inhabitants of the western Beaufort Sea during summer and fall. From 2009 to 2016, bowheads were seen in all survey months, with the highest overall sighting rate (whales per km) in August. Bowhead sighting rates were highest in the whales’ preferred habitats: outer shelf habitat (51–200 m depth) in July and inner shelf-shallow habitat (≤ 20 m depth) in August, September, and October. Beluga whales were also seen in all survey months, with highest overall sighting rate in July. Beluga whales were overwhelmingly associated with continental slope habitat (201–2000 m depth) in all months. Bowhead distribution and depth preferences in summer months of 2009–16 differed from those observed in 1982–91, when bowheads were not seen during limited survey effort in July and preferred outer continental shelf habitat in August. These differences indicate that bowhead whale preference for shallow shelf habitat now occurs earlier in summer than it used to. Beluga distribution and depth preference remained similar between 1982–91 and 2009–16, with strong preference for continental slope during both periods. Differences in sea ice cover habitat association for both species are likely due more to the relative lack of sea ice in recent years compared to the earlier period than to shifts in habitat preference. Habitat partitioning between bowhead and beluga whales in the western Beaufort Sea remained evident except in July, when both species used continental slope habitat. In July – October 2009–16, the distribution, sighting rates, and behavior of both bowheads and belugas in the western Beaufort showed considerable interannual variation, which underscores the importance of annual sampling to accurate records of the complex western Beaufort Sea ecosystem.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4650 ◽  
Author(s):  
Richard R. Coleman ◽  
Joshua M. Copus ◽  
Daniel M. Coffey ◽  
Robert K. Whitton ◽  
Brian W. Bowen

Mesophotic coral ecosystems (MCEs) continue to be understudied, especially in island locations spread across the Indo-Pacific Ocean. Pohnpei is the largest island in the Federated States of Micronesia, with a well-developed barrier reef, and steep slopes that descend to more than 1,000 m. Here we conducted visual surveys along a depth gradient of 0 to 60 m in addition to video surveys that extend to 130 m, with 72 belt transects and 12 roving surveys using closed-circuit rebreathers, to test for changes in reef fish composition from shallow to mesophotic depths. We observed 304 fish species across 47 families with the majority confined to shallow habitat. Taxonomic and trophic positions at 30 m showed similar compositions when compared against all other depths. However, assemblages were comprised of a distinct shallow (<30 m) and deep (>30 m) group, suggesting 30 m as a transition zone between these communities. Shallow specialists had a high probability of being herbivores and deep specialists had a higher probability of being planktivores. Acanthuridae (surgeonfishes), Holocentridae (soldierfishes), and Labridae (wrasses) were associated primarily with shallow habitat, while Pomacentridae (damselfishes) and Serranidae (groupers) were associated with deep habitat. Four species may indicate Central Pacific mesophotic habitat:Chromis circumaurea, Luzonichthys seaver, Odontanthias borbonius,and an undescribed slopefish (Symphysanodon sp.). This study supports the 30 m depth profile as a transition zone between shallow and mesophotic ecosystems (consistent with accepted definitions of MCEs), with evidence of multiple transition zones below 30 m. Disturbances restricted to either region are not likely to immediately impact the other and both ecosystems should be considered separately in management of reefs near human population centers.


2017 ◽  
Vol 75 (1) ◽  
pp. 122-134 ◽  
Author(s):  
Christian W Conroy ◽  
Jay Calvert ◽  
Graham D Sherwood ◽  
Jonathan H Grabowski

Abstract Life-history strategies often vary within motile marine species, affecting morphometry, growth, diet, and fecundity. Atlantic cod (Gadus morhua) in the Gulf of Maine display marked variation in a number of life-history traits, exemplified by differences in body colour. Migratory behaviours are suspected to differ among these colour types, but have yet to be shown definitively. Here, we used the combination of an acoustic telemetry system and fine-scale benthic habitat maps to reveal that the red phenotype cod adhered to an isolated kelp forest covering &lt;2 km2 of a seamount in the central Gulf of Maine. Meanwhile, the olive phenotype cod adopted diel vertical migratory behaviour, possibly in response to a temperature gradient. Use of shallow, structured habitat was influenced by temperature and may be enabled by dynamic conditions related to internal waves that persist throughout the summer and early fall. Detections decreased in response to changing thermal conditions, although phenotypes reacted to these changes in distinct ways: the olive phenotype abandoned shallow habitat prior to peak summer temperatures, while the red phenotype remained until mid-fall when temperatures and temperature variability declined. Our findings support a link between morphometry, colour, behavioural strategies, and habitat preferences that may be widespread in Atlantic cod.


2016 ◽  
Vol 73 (8) ◽  
pp. 1182-1189 ◽  
Author(s):  
Johan Höjesjö ◽  
Rasmus Kaspersson ◽  
John D. Armstrong

In stream-living salmonids, an underlying mechanism for the critical period after emergence has generally been assumed to be size-dependent swimming capacity constraining fry (age-0) to low-velocity habitats with reduced food availability and intense competition. A further plausible mechanism is that intercohort habitat exclusion confines fry to marginal habitats. This possibility was tested using a seminatural stream with 16 test arenas, each comprising one high-velocity, deep habitat and one low-velocity, shallow habitat. We observed groups of newly emerged Atlantic salmon (Salmo salar) fry, either alone or in sympatry with one or two age-1 salmon. Salmon fry used high-velocity areas (42.2 ± 0.4 cm·s−1) most extensively in the absence of intercohort competition, where they obtained more food than in low-velocity areas (3.3 ± 0.3 cm·s−1), even though foraging efficiency was lower (though not significantly so). In sympatry with older cohorts, fry increased their use of the low-velocity habitat, with a reduced foraging activity, suggesting that strong older cohorts in natural populations may have the potential to influence the strength of the recruiting cohort by negative density dependence due to interference competition for habitat.


Sign in / Sign up

Export Citation Format

Share Document