The Burst Activity of Different Cell Regions and Intercellular Co-ordination in the Cardiac Ganglion of the Crab, Eriocheir Japonicus

1972 ◽  
Vol 57 (3) ◽  
pp. 713-726
Author(s):  
KENRO TAZAKI

1. Various patterns of burst activity in the cardiac ganglion cells of the crab Eriocheir japonicus were observed by means of intracellular electrodes. 2. The pacemaker for burst initiation is located among small cells, and it induces small synaptic potentials in the large cells, increasing their excitability. The anterior large cells generate slow potentials by synaptic activation. 3. The slow potential is the spike generator. The anterior large cells are capable of initiating slow potentials in their own somata without synaptic activation from the small cell. 4. Non-synaptic maintained depolarization takes place in the anterior large cell membrane. The after-depolarization are cumulative and can develop the slow potential, leading to repetitive firing. 5. The posterior large cell is innervated by two pre-synaptic nerve fibres, one being the small pacemaker cell and the other the anterior large cell, showing that it is a follower. 6. Electrical interaction is present among ganglion cells. Positive feedback through electrical connexions is observed between large and small cells. 7. The cardiac ganglion of the crab has some features common and similar to those found in the ganglia of both the lobster and Squilla.

1973 ◽  
Vol 62 (4) ◽  
pp. 448-472 ◽  
Author(s):  
Earl Mayeri

External recording and stimulation, techniques were used to determine which neurons and interactions are essential for production of the periodic burst discharge in the lobster cardiac ganglion. Burst activity can be modulated by brief single shocks applied to the four small cells, but not by similar stimulation of the five large cells, suggesting that normally one or more small cells primarily determine burst rate and duration. Repetitive electrical stimulation of large cells initiates spike activity in small cells, probably via excitatory synaptic and/or electrotonic connections which may normally act to prolong bursts and decrease burst rate. Transection of the ganglion can result in burst activity in small cells in the partial or complete absence of large cell spike activity, but large cells isolated from small cell excitatory synaptic input by transection or by application of dinitrophenol do not burst. Generally, transections which decrease excitatory feedback to small cells are accompanied by an increase in burst rate, but mean spike frequency over an entire burst cycle stabilizes at the original level within 10–30 min for various groups of cells whose spike-initiating sites are still intact. These and previous results suggest that the system is two layered: one or more small cells generate the burst pattern and impose it on the large cells which are the system's motorneurons.


1973 ◽  
Vol 58 (2) ◽  
pp. 473-486
Author(s):  
KENRO TAZAKI

1. Single-unit analysis was made by means of internal and external recordings in order to observe the impulse activity of the component neurones in the lobster cardiac ganglion. 2. The large cells fired a brief high-frequency train of postsynaptic impulses in the axonal region by repetitive synaptic activation from small cells which was brought about in the soma-dendritic regions. They generated slow potentials with repetitive impulses by themselves when without synaptic controls. 3. A long-lasting train of presynaptic impulses was propagated from the small pacemaker neurone to the large-cell somata, inducing small synaptic potentials. The burst activity of the ganglion was initiated by this neurone. 4. Impulses of different kinds, presynaptic or postsynaptic, were observed in small cells. This activity occurred at about the same time as that of the pacemaker neurone and was of almost the same duration. 5. Synchronizing mechanisms of all nine neurones were discussed with respect to electrotonic interaction mediated by slow potentials, compared to synaptic interaction mediated by impulses.


1979 ◽  
Vol 42 (4) ◽  
pp. 1000-1021 ◽  
Author(s):  
K. Tazaki ◽  
I. M. Cooke

1. Tetrodotoxin-resistant, active responses to depolarization of the large cardiac ganglion cells were studied in semi-isolated preparations from the crab, Portunus sanguinolentus. Impulse activity was monitored with extracellular electrodes, simultaneous recordings from two or three large cells were made with intracellular electrodes, and current was passed via a bridge or second intracellular electrode. Preparations were continuously perfused with saline containing 3 x 10(-7) M tetrodotoxin (TTX). 2. About 20 min after introduction of TTX, small-cell impulses and resultant EPSPs in large cells cease, while rhythmic, spontaneous bursting of large cells continues. A pacemaker depolarization between bursts and slow depolarizations underlying the impulse bursts are prominent at this time. Shortly after, spontaneous burst rate slows, and at ca. 25 min, the ganglion becomes electrically quiescent. 3. In the quiescent, TTX-perfused ganglion, injection of depolarizing current into any one of the large cells results in active responses. At current strengths of sufficient intensity and duration (e.g., 20 nA, 20 ms; 5 nA, 500 ms) to depolarize a large cell by ca. 10 mV from resting potential (-53 mV, avg), the graded responses become regenerative and of constant form, provided the stimulation rate is less thna 0.15/s. Such responses have been termed "driver potentials." At more rapid rates, thresholds are increased and responses reduced. 4. Driver potentials of anterior large cells reach peak amplitudes of ca. 20 mV (to -32 mV), have maximum rates of rise of 0.45 V/s and of fall of 0.2 V/s, and a duration of ca. 250 ms. They are followed by hyperpolarizing afterpotentials, a rapidly decaying one (1 s) to -58 mV, followed by a slowly decaying one (7.5 s), -55 mV. Responses of posterior large cells are smaller (16 mV) and slower; the site of active response may be at a distance from the soma. 5. The ability of elicit near-synchronous responses and the identity of amplitude and form of responses among anterior cells and of posterior cells, regardless of which cell receives depolarizing current, indicates that all cells undergo active responses and are stimulated by electrotonic spread of depolarization. 6. The responses involve a conductance increase since memses during a driver potential are much reduced. 7. Depolarization by steady current increases the absolute threshold, decreases the maximum depolarization of the peak, and slows rates of rise and fall. Hyperpolarization increases rates of rise and fall; the absolute value reached by the peak depolarization is unchanged. Hyperpolarization reduces the amplitude of the rapid after-potential relative to the displaced resting potential. 8. Hyperpolarizing current pulses imposed during the rise and peak of driver-potential responses are followed by redevelopment of a complete response. Sufficiently strong hyperpolarization can terminate a response. The current strength needed to terminate a response decreases the later during the response the pulse is given...


1979 ◽  
Vol 42 (4) ◽  
pp. 975-999 ◽  
Author(s):  
K. Tazaki ◽  
I. M. Cooke

1. Semi-isolated preparations of the nine-celled cardiac ganglion of the crab, Portunus sanguinolentus, were studied electrophysiologically, using simultaneous recording from extracellular and two or three intracellular electrodes. Nine penetrations of small cells were achieved. 2. Three large (80 x 120 micron) cells lie near the anterior end of the 5-mm main trunk; two large and four small (less than 50 micron) cells at the posterior end. Large-cell axons pass along the main trunk and then exit to innervate cardiac muscle; small-cell axons do not leave the ganglion. 3. The semi-isolated ganglion produces spontaneous electrical activity organized into regularly patterned, rhythmic bursts of large- and small-cell impulses recurring at rates of 0.3-0.6/s and lasting 500-800 ms. Small impulse activity commences and ends each burst. Small cells fire trains during the burst, but impulses are not synchronized among them. Large-cell trains are synchronous, are at about one-half the frequency, and have fewer impulses than small-cell trains. 4. Intracellular recordings from small cells show a slow, pacemaker depolarization from a maximum membrane potential of -54 mV leading with only a slight inflection at ca. -50 mV to a depolarized plateau at ca. -40 mV; nonovershooting impulses are superimposed on this but cease before it repolarizes. Impulses, therefore, arise at a site distant from the soma and do not invade it. Deflections suggesting synaptic potentials are not seen. 5. Intracellular recordings from large cells show complex depolarizations corresponding to extracellularly recorded bursts. These represent excitatory postsynaptic potentials (EPSPs) corresponding with individual small-cell impulses, attenuated, non-overshooting spikes, and an underlying slow depolarization; usually no pacemaker depolarization is apparent between bursts. Chemically mediated transmission is probable for the EPSPs because they show delay, increase in amplitude with hyperpolarization, sometimes show facilitation, and are reduced in saline having one-third Ca, 3 x Mg. 6. EPSPs, impulses, and the slow depolarization occur synchronously among the large cells. Potentials recorded from posterior cells are attenuated and slower than those of the anterior cells. This is interpreted to reflect sites of occurrence more distant from the soma in the posterior than in the anterior cells. Impulses do not invade the somata. 7. Intracellular recordings from large-cell axons 4 mm from the soma show overshooting action potentials arising sharply from a base line. EPSPs are absent or highly attenuated and there is little underlying depolarization (less than 2 mV). 8. Current passing with electrodes intracellular to two cells has established directly that all large cells are electrotonically coupled and that an anterior cell and a small cell are coupled. Changes of burst rate during current passing into any large cell indicate that all large cells and small cells are electrotonically coupled. 9...


1969 ◽  
Vol 50 (2) ◽  
pp. 275-295 ◽  
Author(s):  
JOHN A. CONNOR

1. The patterned burst activity of cardiac pacemaker ganglion cells in Homarus americanus has been studied by means of intracellular recording electrodes. 2. Burst activity, highly similar to that seen in cells of intact ganglia, has been demonstrated in ganglion sections containing as few as two large-cell bodies. 3. Studies of the sectioned preparations have shown that potential deflexions during the burst period are mainly endogenous activity of the respective cells and not post-synaptic potentials. 4. The behaviour of the cells in the period between bursts suggests the action of an inhibitory conductance change in each of the cells during this period.


1967 ◽  
Vol 47 (2) ◽  
pp. 327-341
Author(s):  
DANIEL K. HARTLINE

1. Simultaneous recording from several pairs of electrodes placed along the ganglion and certain efferent nerves, during stimulation of other efferents, allows the course of antidromic impulses in each stimulated axon to be mapped. 2. These impulses disappear as they approach their somata, being incapable of invading them, a fact which permits identification of a particular efferent axon with a particular soma. 3. By these means the courses of all such efferent axons, and their corresponding somata, have been determined. These all belong to the five large cells. 4. The impulses from each such axon occurring during the spontaneous burst can be identified, as can impulses from each small cell. 5. Each large-cell axon appears to be inexcitable until it is a few mm from the soma. 6. If the axon branches within this inexcitable region, the branches tend to fire impulses independently. 7. The technique of cell identification opens the way to a more complete analysis of the ganglion's activity and the synaptic interactions which produce it.


1972 ◽  
Vol 56 (3) ◽  
pp. 621-637
Author(s):  
MICHAEL S. BERRY

1. The buccal ganglia of Planorbis contain a population of electrically coupled small cells. This has been studied, in preparations of isolated ganglia, by recording intracellularly from the cells two at a time. 2. The population is usually silent but activity initiated in any one of its members tends to spread to the rest of the population in both ganglia. Failure of spread, or fatigue, gradually occurs on repetition. 3. The group has the properties of a trigger system, initiating prolonged patterned activity in large numbers of neurones in the buccal ganglia. This may normally initiate feeding. 4. In addition to central processes, both in the buccal ganglia and to the rest of the CNS, the system has peripheral axons in most of the buccal nerves. No synaptic input could be demonstrated. 5. Action potentials in some of the cells increase greatly in duration with repetition. The resulting electrotonic EPSP's, recorded in closely coupled trigger cells, correspondingly increase in size. The possible integrative significance of this is discussed, especially its effect in offsetting fatigue. 6. In some preparations spontaneous bursting occurred in trigger cells and this elicited burst activity in large neurones, including motoneurones. The system may have an intrinsic pacemaker.


1981 ◽  
Vol 94 (1) ◽  
pp. 95-104
Author(s):  
J. N. SIGGER ◽  
D. A. DORSETT

The buccal ganglia of Philine each contain a group of mechanoreceptors, consisting of 1 large and 3 small cells, with receptive fields in the oesophagus. Synaptic contacts occur between the receptors; the large cell providing an EIPSP input to its contralateral partner and to the two groups of smaller receptors. The small receptors make weak excitatory contacts with both the large receptors. The sensory cells synapse with other buccal motoneurones and interneurones, some of which show periodic activity associated with the feeding movements. Protraction phase neurones are divisible into two groups, one of which receives EPSPs from the receptors, while the other group receives IPSPs. Retraction phase neurones receive a biphasic EIPSP. The receptors provide excitatory synaptic input to a pair of interneurones which ‘gate’ the feeding cycle. A third class of neurones which are not rhythmically active during feeding receive a predominantly inhibitory EIPSP.


1975 ◽  
Vol 63 (1) ◽  
pp. 33-52
Author(s):  
I. M. Cooke ◽  
D. K. Hartline

The spontaneous burst discharges of isolated lobster (Homarus americanus) cardiac ganglia were recorded with a spaced array of electrodes. Small regions (less than 1 mm) of the ganglion were exposed to the cardioexcitor neurohormone in extracts of pericardial organs (XPO) or to 10(−5) M 5-hydroxytryptamine (5HT). All axons were excited (increased mean firing frequency, f) by both substances, but only by applications in the region between the soma (but excluding it) and proximal site of impulse initiation. Units not so exposed changed their f relatively little despite f increases of as much as threefold in exposed units and changes in burst rate and overall length. Regularity and grouping of all impulse activity into bursts was never disturbed. 5HT increases burst rate at any point of application. The increases are larger if small cells are affected than if only large cells are exposed. Burst length decreases except when the pacemaker is affected. In contrast, XPO affects neither burst rate or length unless small cells are affected. Length is increased if non-pacemaker small cells are affected; both rate and length increase if the pacemaker is affected. The pacemaker usually exhibits an f of intermediate value. Rate changes are not simply related to its f. A small cell can “burst” in the absence of impulses from any other cells. XPO may enhance endogenous “driver potentials,” while 5HT may excite by depolarizing at limited sites.


Sign in / Sign up

Export Citation Format

Share Document