slow depolarization
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 0)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ki Bum Um ◽  
Suyun Hahn ◽  
So Woon Kim ◽  
Yoon Je Lee ◽  
Lutz Birnbaumer ◽  
...  

Midbrain dopamine (DA) neurons are slow pacemakers that maintain extracellular DA levels. During the interspike intervals, subthreshold slow depolarization underlies autonomous pacemaking and determines its rate. However, the ion channels that determine slow depolarization are unknown. Here we show that TRPC3 and NALCN channels together form sustained inward currents responsible for the slow depolarization of nigral DA neurons. Specific TRPC3 channel blockade completely blocked DA neuron pacemaking, but the pacemaking activity in TRPC3 knock-out (KO) mice was perfectly normal, suggesting the presence of compensating ion channels. Blocking NALCN channels abolished pacemaking in both TRPC3 KO and wild-type mice. The NALCN current and mRNA and protein expression are increased in TRPC3 KO mice, indicating that NALCN compensates for TRPC3 currents. In normal conditions, TRPC3 and NALCN contribute equally to slow depolarization. Therefore, we conclude that TRPC3 and NALCN are two major leak channels that drive robust pacemaking in nigral DA neurons.


2021 ◽  
Author(s):  
Ki Bum Um ◽  
Suyun Hahn ◽  
So Woon Kim ◽  
Yoon Je Lee ◽  
Lutz Birnbaumer ◽  
...  

Midbrain dopamine (DA) neurons are slow pacemakers that maintain extracellular DA levels. During the interspike intervals, subthreshold slow depolarization underlies autonomous pacemaking and determines its rate. However, the ion channels that determine slow depolarization are unknown. Here we show that TRPC3 and NALCN channels together form sustained inward currents responsible for the slow depolarization of nigral DA neurons. Specific TRPC3 channel blockade completely blocked DA neuron pacemaking, but the pacemaking activity in TRPC3 knock-out (KO) mice was perfectly normal, suggesting the presence of compensating ion channels. Blocking NALCN channels abolished pacemaking in both TRPC3 KO and wild-type mice. The NALCN current and mRNA and protein expression are increased in TRPC3 KO mice, indicating that NALCN compensates for TRPC3 currents. In normal conditions, TRPC3 and NALCN contribute equally to slow depolarization. Therefore, we conclude that TRPC3 and NALCN are two major leak channels that drive robust pacemaking in nigral DA neurons.


2019 ◽  
Vol 58 (1) ◽  
Author(s):  
С.Т. Тулеуханов ◽  
Ж.Т. Абдрасулова ◽  
Г.А. Тусупбекова ◽  
А.А. Маутенбаев ◽  
К.Б. Ерназарова ◽  
...  

2018 ◽  
Author(s):  
Kimiya Narikiyo ◽  
Hiroyuki Manabe ◽  
Yoshihiro Yoshihara ◽  
Kensaku Mori

Olfactory perception depends on respiration phases: olfactory cortex processes external odor signals during inhalation whereas it is isolated from the external odor world during exhalation. Olfactory cortex pyramidal cells receive the sensory signals via bottom-up pathways terminating on superficial layer (SL) dendrites while they receive top-down inputs on deep layer (DL) dendrites. Here we asked whether olfactory cortex pyramidal cells spontaneously change the action modes of receiving olfactory sensory inputs and receiving top-down inputs in relation to respiration phases. Current source density analysis of local field potentials recorded in three different olfactory cortex areas of waking immobile rats revealed β- and γ-range fast oscillatory current sinks and a slow current sink in the SL during inhalation, whereas it showed β- and γ-range fast oscillatory current sinks and a slow current sink in the DL during exhalation. Sensory deprivation experiments showed that inhalation-phased olfactory sensory inputs drove the inhalation-phased fast oscillatory potentials in the SL but they drove neither the inhalation-phased slow current sink in the SL nor the exhalation-phased slow current sink in the DL. The results indicate that independent of inhalation-phased olfactory sensory inputs, olfactory cortex pyramidal cells spontaneously generate a slow depolarization in the SL dendrites during inhalation, which may selectively boost the concomitant olfactory sensory inputs to elicit spike outputs. In addition, the pyramidal cells spontaneously generate slow depolarization in the DL dendrites during exhalation, which may assist top-down inputs to elicit spike outputs. We thus hypothesize that the olfactory cortical areas coordinately perform inhalation/exhalation-phased switching of input biasing: inhalation phase is the time window for external odor signals that arrive in the SL dendrites, whereas exhalation phase is assigned to boost top-down signals to the DL dendrites that originate in higher brain centers.


2015 ◽  
Vol 91 (24) ◽  
Author(s):  
Y. Qi ◽  
J. M. P. Martirez ◽  
Wissam A. Saidi ◽  
J. J. Urban ◽  
W. S. Yun ◽  
...  

Channels ◽  
2014 ◽  
Vol 8 (3) ◽  
pp. 243-248 ◽  
Author(s):  
Christin F Romberg ◽  
Donald Beqollari ◽  
Ulises Meza ◽  
Roger A Bannister
Keyword(s):  

2014 ◽  
Vol 106 (2) ◽  
pp. 126a
Author(s):  
Christin F. Romberg ◽  
Donald Beqollari ◽  
Ulises Meza ◽  
Roger A. Bannister

2013 ◽  
Vol 109 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Tyler K. Best ◽  
Lesley Marson ◽  
Karl B. Thor ◽  
Edward C. Burgard

Ejaculation is controlled by coordinated and rhythmic contractions of bulbospongiosus (BSM) and ischiocavernosus muscles. Motoneurons that innervate and control BSM contractions are located in the dorsomedial portion of the ventral horn in the L5–6 spinal cord termed the dorsomedial (DM) nucleus. We characterized intrinsic properties of DM motoneurons as well as synaptic inputs from the dorsal gray commissure (DGC). Electrical stimulation of DGC fibers elicited fast inhibitory and excitatory responses. In the presence of glutamate receptor antagonists, both fast GABAergic as well as glycinergic inhibitory postsynaptic potentials (IPSPs) were recorded. No slow GABAB-mediated inhibition was evident. In the presence of GABAA and glycine receptor antagonists, DGC stimulation elicited fast glutamatergic excitatory responses that were blocked by application of CNQX. Importantly, a slow depolarization (timescale of seconds) was routinely observed that sufficiently depolarized the DM motoneurons to fire “bursts” of action potentials. This slow depolarization was elicited by a range of stimulus train frequencies and was insensitive to glutamate receptor antagonists (CNQX and d-APV). The slow depolarization was accompanied by an increase in membrane resistance with an extrapolated reversal potential near the K+ Nernst potential. It was mediated by the combination of the block of a depolarization-activated K+ current and the activation of a QX-314-sensitive cation current. These results demonstrate that fast synaptic responses in DM motoneurons are mediated primarily by glutamate, GABA, and glycine receptors. In addition, slow nonglutamatergic excitatory postsynaptic potentials (EPSPs), generated through DGC stimulation, can elicit burstlike responses in these neurons.


2010 ◽  
Vol 298 (2) ◽  
pp. G222-G232 ◽  
Author(s):  
Eamonn J. Dickson ◽  
Dante J. Heredia ◽  
Conor J. McCann ◽  
Grant W. Hennig ◽  
Terence K. Smith

Colonic migrating motor complexes (CMMCs) propel fecal contents and are altered in diseased states, including slow-transit constipation. However, the mechanisms underlying the CMMCs are controversial because it has been proposed that disinhibition (turning off of inhibitory neurotransmission) or excitatory nerve activity generate the CMMC. Therefore, our aims were to reexamine the mechanisms underlying the CMMC in the colon of wild-type and neuronal nitric oxide synthase (nNOS)−/− mice. CMMCs were recorded from the isolated murine large bowel using intracellular recordings of electrical activity from circular muscle (CM) combined with tension recording. Spontaneous CMMCs occurred in both wild-type (frequency: 0.3 cycles/min) and nNOS−/− mice (frequency: 0.4 cycles/min). CMMCs consisted of a hyperpolarization, followed by fast oscillations (slow waves) with action potentials superimposed on a slow depolarization (wild-type: 14.0 ± 0.6 mV; nNOS−/−: 11.2 ± 1.5 mV). Both atropine (1 μM) and MEN 10,376 [neurokinin 2 (NK2) antagonist; 0.5 μM] added successively reduced the slow depolarization and the number of action potentials but did not abolish the fast oscillations. The further addition of RP 67580 (NK1 antagonist; 0.5 μM) blocked the fast oscillations and the CMMC. Importantly, none of the antagonists affected the resting membrane potential, suggesting that ongoing tonic inhibition of the CM was maintained. Fecal pellet propulsion, which was blocked by the NK2 or the NK1 antagonist, was slower down the longer, more constricted nNOS−/− mouse colon (wild-type: 47.9 ± 2.4 mm; nNOS−/−: 57.8 ± 1.4 mm). These observations suggest that excitatory neurotransmission enhances pacemaker activity during the CMMC. Therefore, the CMMC is likely generated by a synergistic interaction between neural and interstitial cells of Cajal networks.


Sign in / Sign up

Export Citation Format

Share Document