Effect of Extracellular Potassium on the Transport of Sodium and Potassium in Rat Thymocytes

1981 ◽  
Vol 61 (3) ◽  
pp. 307-312 ◽  
Author(s):  
R. B. Jones ◽  
J. Patrick ◽  
P. J. Hilton

1. The effect of extracellular potassium on the transport of sodium and potassium in rat thymocytes has been studied in vitro. 2. A significant increase in the rate constant for total and ouabain-sensitive sodium efflux was demonstrated at an extracellular potassium concentration of 1 mmol/l as compared with that at either 0 or 2 mmol/l. 3. At potassium concentrations below 3 mmol/l ouabain-sensitive sodium influx was observed suggesting sodium-sodium exchange catalysed by the sodium pump. 4. Both total and ouabain-insensitive potassium efflux rose with external potassium. A small ouabain-sensitive potassium efflux was observed at all levels of external potassium studied. 5. Total and ouabain-insensitive potassium influx increased with external potassium, but did not appear to saturate. Ouabain-sensitive potassium influx reached a maximum at an external potassium concentration of 2 mmol/l then decreased with increasing external potassium.

1975 ◽  
Vol 49 (5) ◽  
pp. 385-390
Author(s):  
P. J. Hilton ◽  
R. P. S. Edmondson ◽  
R. D. Thomas ◽  
J. Patrick

1. Sodium and potassium transport rates in human leucocytes were measured in vitro at different external potassium concentrations. 2. At nominally zero external potassium concentrations, the ouabain-sensitive sodium efflux was reduced to less than 20% of its maximum value. There was evidence that under these conditions a ouabain-sensitive sodium-sodium exchange occurs. 3. Both total and ouabain-insensitive potassium influx increased with increasing external potassium concentration. The ouabain-sensitive potassium influx showed saturation. 4. Ouabain-insensitive potassium efflux was also stimulated by increasing the external potassium concentration, suggesting significant potassium-potassium exchange at physiological external potassium concentrations.


1985 ◽  
Vol 68 (1) ◽  
pp. 89-91 ◽  
Author(s):  
Valerie E. Johnson ◽  
P. J. Hilton

1. Frusemide-sensitive sodium and potassium transport by normal human leucocytes has been studied in vitro by both isotopic and net flux techniques. 2. In physiological media the leucocyte exhibits a frusemide-sensitive influx of sodium and potassium of equal magnitude compatible with a 1:1 co-transport system. 3. Cells exposed to zero external sodium and potassium (osmolality maintained with choline) demonstrated a frusemide-sensitive sodium and potassium efflux. 4. Frusemide-sensitive potassium influx was dependent on the presence of external sodium but frusemide-sensitive sodium influx persisted unchanged in the absence of external potassium. 5. Frusemide-sensitive potassium influx was dependent on external chloride but frusemide-sensitive sodium influx was chloride-independent. 6. These last two observations make it likely that the frusemide-sensitive pathway is capable of operating in modes other than sodium-potassium co-transport.


1954 ◽  
Vol 37 (5) ◽  
pp. 631-641 ◽  
Author(s):  
Howard S. Frazier ◽  
Arthur Sicular ◽  
A. K. Solomon

The inward transport of potassium by separated dog erythrocytes has been studied at concentrations of potassium in the medium from 2.9 to 25.0 m.eq./liter and at 38.0 and 33.0°C. At the physiological concentration of external potassium (4.06 m.eq./liter medium), the inward potassium flux is 0.11 m.eq./liter cells hour and the glucose consumption is 2.0 mM/liter cells hour. The dependence of potassium influx on extracellular potassium concentration is given by the following equation, K influx (m.eq./liter cells hour) = 0.028 [K]amb. – 0.003 in which [K]amb. refers to the potassium concentration in the medium. In a single 93 hour experiment, 94 per cent of the intracellular potassium was exchanged at an apparently uniform rate. The average apparent activation energy for the process is 7,750 calories ± 2,000 calories/mol and there is some indication that the apparent activation energy of inward K transport decreases with increasing external K concentration.


1983 ◽  
Vol 64 (2) ◽  
pp. 167-176 ◽  
Author(s):  
M. Cumberbatch ◽  
D. B. Morgan

1. The erythrocyte content of sodium and of potassium were measured in 231 unselected patients with hypokalaemia, and together with net ouabain-sensitive sodium efflux in patients with severe hypokalaemia, before (20 patients) and during potassium repletion (14 patients). 2. The erythrocytes of the patients with hypokalaemia compared with control subjects had on average an increase in sodium content, a decrease in potassium content and a reduction in the rate constant of ouabain-sensitive sodium efflux. All three changes had a similar curvilinear relation to the concentration of potassium in plasma with relatively little change in the measured variable unless the plasma potassium was very low. 3. There was a similar curvilinear relation between the final sodium and potassium content of normal erythrocytes and the potassium concentration of the medium in which they were incubated for 48 h in vitro. 4. These results suggest that the changes in the sodium and potassium content of erythrocytes in hypokalaemia are due to a direct inhibiting effect of the hypokalaemia on the activity of the sodium pump. 5. In many patients with hypokalaemia of moderate degree the increase in erythrocyte sodium content was less than expected from the effect in vitro of a low extracellular potassium concentration. This finding suggests that a compensatory change, presumably an increase in the number of sodium pumps, is a common event even in moderate hypokalaemia.


1995 ◽  
Vol 74 (2) ◽  
pp. 565-573 ◽  
Author(s):  
M. A. Perez-Pinzon ◽  
L. Tao ◽  
C. Nicholson

1. An in vitro slice model of ischemia was used to study changes in extracellular potassium concentration and diffusion properties in the stratum pyramidale of CA1 and CA3 regions of the hippocampus and in the cortex of the rat. Slices were submerged in artificial cerebrospinal fluid, and ischemia was induced by removing oxygen and glucose until anoxic depolarization occurred. 2. Extracellular potassium concentration was measured with a valinomycin-based ion-selective microelectrode. The bathing medium contained 5 mM potassium, and in vitro ischemia caused the potassium concentration to rise to 45 mM in CA1, 12 mM in CA3, and 32 mM in cortex. 3. Extracellular volume fraction and tortuosity were determined during normoxic conditions and in vitro ischemia by measuring the diffusion of tetramethylammonium. This cation was iontophoretically released into the extracellular space and its concentration as a function of time determined with an ion-selective microelectrode approximately 100 microns away from the source. 4. During normoxia the volume fraction was 0.14, 0.20, and 0.18, and tortuosity was 1.50, 1.57, and 1.62 in CA1, CA3, and cortex, respectively. These data confirm that the volume fraction of CA1 is smaller than in the two other regions. 5. During ischemia the volume fraction decreased to 0.05, 0.17, and 0.09 in CA1, CA3, and cortex, respectively. Only in CA3 did the tortuosity change significantly by increasing to 1.75. Because of limitations in the time resolution of the diffusion method, the changes in volume fraction and tortuosity during the anoxic depolarization phase of ischemia may have been underestimated.(ABSTRACT TRUNCATED AT 250 WORDS)


1974 ◽  
Vol 46 (5) ◽  
pp. 613-617 ◽  
Author(s):  
P. J. Hilton ◽  
J. Patrick

1. Sodium and potassium transport rates were studied in normal human leucocytes exposed to iso-osmolal and hypo-osmolal extracellular fluid. 2. Hypo-osmolality of the extracellular fluid led to an increase in sodium influx and a decrease in potassium influx expressed as mmol h−1 kg−1 cell dry weight. The fall in potassium influx was smaller than the rise in sodium influx and was confined to the ouabain-insensitive portion of the flux. 3. The rate constants for sodium and potassium efflux did not differ significantly between the iso-osmolal and hypo-osmolal media.


1973 ◽  
Vol 44 (5) ◽  
pp. 439-445 ◽  
Author(s):  
P. J. Hilton ◽  
J. Patrick

1. Sodium and potassium efflux and influx rates were studied in normal human leucocytes in an artificial extracellular fluid using radioactive isotopes. 2. The rate constant for sodium efflux was 4.2 h−1 corresponding to a sodium efflux rate of 487 mmol kg cell dry weight−1 h−1. Approximately three-quarters of this flux was ouabain sensitive. 3. Potassium influx was 346 mmol kg cell dry weight−1 h−1. Approximately two-thirds of the potassium influx was ouabain insensitive.


2008 ◽  
Vol 99 (6) ◽  
pp. 2902-2915 ◽  
Author(s):  
Ulf Strauss ◽  
Fu-Wen Zhou ◽  
Jeannette Henning ◽  
Arne Battefeld ◽  
Andreas Wree ◽  
...  

Abnormal neuronal activity in the subthalamic nucleus (STN) plays a crucial role in the pathophysiology of Parkinson's disease (PD). Although altered extracellular potassium concentration ([K+]o) and sensitivity to [K+]o modulates neuronal activity, little is known about the potassium balance in the healthy and diseased STN. In vivo measurements of [K+]o using ion-selective electrodes demonstrated a twofold increase in the decay time constant of lesion-induced [K+]o transients in the STN of adult Wistar rats with a unilateral 6-hydroxydopamine (6-OHDA) median forebrain bundle lesion, employed as a model of PD, compared with nonlesioned rats. Various [K+]o concentrations (1.5–12.5 mM) were applied to in vitro slice preparations of three experimental groups of STN slices from nonlesioned control rats, ipsilateral hemispheres, and contralateral hemispheres of lesioned rats. The majority of STN neurons of nonlesioned rats and in slices contralateral to the lesion fired spontaneously, predominantly in a regular pattern, whereas those in slices ipsilateral to the lesion fired more irregularly or even in bursts. Experimentally increased [K+]o led to an increase in the number of spontaneously firing neurons and action potential firing rates in all groups. This was accompanied by a decrease in the amplitude of post spike afterhyperpolarization (AHP) and the amplitude and duration of the posttrain AHP. Lesion effects in ipsilateral neurons at physiological [K+]o resembled the effects of elevated [K+]o in nonlesioned rats. Our data suggest that changed potassium sensitivity due to conductivity alterations and delayed clearance may be critical for shaping STN activity in parkinsonian states.


1982 ◽  
Vol 242 (6) ◽  
pp. F664-F671 ◽  
Author(s):  
E. Natke ◽  
L. C. Stoner

The effects of varying endogenous aldosterone levels on the passive and active properties of the peritubular membrane were studied. Rabbits that were fed either a low Na+ (normal K+) diet or a high Na+, low K+ diet increased or decreased plasma aldosterone, respectively. Tubules were dissected, filled with oil, and incubated in 0 K+ medium to increase intracellular sodium. Cellular sodium and potassium content was measured by helium-glow photometry. The degree to which cells accumulate sodium and lose potassium is a function not only of time of exposure but also of diet. Tubules from animals on a low Na+ diet are about 6 times more permeable to sodium than those from animals fed a high Na+ diet. When tubules were loaded with sodium and returned to a normal (5 mM K+) bathing medium, net sodium efflux and potassium influx occurred. The rate of sodium efflux by cortical collecting tubules dissected from animals on the low Na+ diet was 2.3 times greater than the efflux rate of tubules from animals on the high Na+ diet. These data suggest that high levels of endogenous aldosterone enhance sodium transport measured in vitro across the peritubular membrane of cortical collecting tubule.


Sign in / Sign up

Export Citation Format

Share Document