scholarly journals The Kinetics of Sodium Extrusion in Striated Muscle As Functions of the External Sodium and Potassium Ion Concentrations

1971 ◽  
Vol 57 (2) ◽  
pp. 164-187 ◽  
Author(s):  
R. A. Sjodin

After a 20 min initial washout, the rate of loss of radioactively labeled sodium ions from sodium-enriched muscle cells is sensitive to the external sodium and potassium ion concentrations. In the absence of external potassium ions, the presence of external sodium ions increases the sodium efflux. In the presence of external potassium ions, the presence of external sodium ions decreases the sodium efflux. In the absence of external potassium ions about one-third of the Na+ efflux that depends upon the external sodium ion concentration can be abolished by 10-5 M glycoside. The glycoside-insensitive but external sodium-dependent Na+ efflux is uninfluenced by external potassium ions. In the absence of both external sodium and potassium ions the sodium efflux is relatively insensitive to the presence of 10-5 M glycoside. The maximal external sodium-dependent sodium efflux in the absence of external potassium ions is about 20% of the magnitude of the maximal potassium-dependent sodium efflux. The magnitude of the glycoside-sensitive sodium efflux in K-free Ringer solution is less than 10% of that observed when sodium efflux is maximally activated by potassium ions. The inhibition of the potassium-activated sodium efflux by external sodium ions is of the competitive type. Reducing the external sodium ion concentration displaces the plots of sodium extrusion rate vs. [K]o to the left and upwards.

1973 ◽  
Vol 58 (3) ◽  
pp. 627-636
Author(s):  
DAVID H. EVANS ◽  
CHARLES H. MALLERY ◽  
LARRY KRAVITZ

1. The effect of external potassium ions on the extrusion of sodium ions by the seawater-acclimated fat sleeper, Dormitator maculatus, was investigated. 2. Removal of external potassium ions reduced the efflux of sodium from the fish by 22% while addition of 10-4 M ouabain reduced the efflux of sodium ions by 14%. 3. Addition of potassium ions to distilled-water baths into which fish were rapidly transferred stimulated sodium extrusion in a manner which could be described by the Michaelis-Menten equation. The Km of this potassium-stimulated sodium efflux was approximately 2 mM-K/1. 4. The calculated rate of sodium extrusion was 10 times the oral ingestion of sodium ions. 5. Biochemical assays of the levels of the enzyme Na-K-activated ATPase extracted from gill tissue determined that seawater-acclimated fish had 3 times the enzymic activity that fish acclimated to freshwater had. 6. In vitro potassium stimulation of the extracted Na-K-activated ATPase showed Michaelis-Menten kinetics with a Km of approximately 2 mM-K/l. 7. It is concluded that the extrusion of sodium ions by Dormitator maculatus acclimated to sea water is coupled with potassium uptake and is mediated by the enzyme Na-K-activated ATPase.


1974 ◽  
Vol 61 (2) ◽  
pp. 277-283
Author(s):  
DAVID H. EVANS ◽  
JEFFREY C. CARRIER ◽  
MARGARET B. BOGAN

1. A technique has been developed for the measurement of electrical potentials (TGP's) across the gills of free-swimming, Dormitator maculatus. 2. Transfer of fish to various KCl solutions is correlated with changes in the TGP, which are not of sufficient magnitude to account for the known potassium stimulation of sodium efflux from this species. 3. Transfer to potassium-free sea water results in little or no change in TGP while previous results have shown that such a transfer is correlated with a 22% reduction of sodium efflux. 4. Transfer to fresh water results in a reduction of TGP from +17 mV (inside positive) to -36 mV which is sufficient to account for the instantaneous reduction in sodium efflux previously shown for this species. 5. It is concluded that while changes in TGP can account for the ‘Na-free effect’ in D. maculatus they cannot account for the potassium effects on sodium extrusion. This supports the previous conclusion that sodium efflux and potassium influx are chemically linked in this species.


1969 ◽  
Vol 54 (5) ◽  
pp. 664-674 ◽  
Author(s):  
R. A. Sjodin ◽  
L. A. Beauge

The sensitivity of sodium efflux to the removal of potassium ions from the external solution and the change in sodium efflux occurring when sodium ions are also removed were observed to be related. When Tris was used to replace external sodium ions, increases in sodium efflux were always observed whether the sensitivity of sodium efflux to external potassium ions was weak or strong. Greater percentage increases in sodium efflux occurred, however, the greater the sensitivity of sodium efflux to external potassium ions. When lithium ions were used to replace external sodium ions, increases in sodium efflux occurred if the sensitivity of efflux to external potassium ions was strong whereas decreases in sodium efflux took place if the sensitivity of efflux to external potassium ions was weak. Intermediate sensitivities of efflux to external potassium resulted in no change in efflux upon substitution of lithium ions for external sodium ions. In the presence of 10-5 M ouabain, substitution of Tris for external sodium ions always resulted in a small decrease in sodium efflux. The data can be described in terms of a model which assumes the presence of efflux stimulation sites that are about 98% selective to potassium ions and about 2% selective to sodium or lithium ions.


1967 ◽  
Vol 50 (5) ◽  
pp. 1201-1220 ◽  
Author(s):  
R. L. Post ◽  
C. D. Albright ◽  
K. Dayani

Further support for the pump-leak concept was obtained. Net transport was resolved into pump and leak components with the cardiac glycoside, ouabain. The specificity of ouabain as a pump inhibitor was demonstrated by its ineffectiveness when the pump was already inhibited by lack of one of the three pump substrates, sodium ion, potassium ion, or adenosine triphosphate. In the presence of ouabain the rates of passive transport of sodium and potassium ions changed almost in proportion to changes in their extracellular concentrations when one ion was exchanged for the other. In the presence of ouabain and at the extracellular concentrations which produced zero net transport, the ratio of potassium ions to sodium ions was 1.2-fold higher inside the cells than outside. This finding was attributed to a residual pump activity of less than 2% of capacity. The permeability to potassium ions was 10% greater than the permeability to sodium ions. A test was made of the independence of pump and leak. Conditions were chosen to change the rate through each pathway separately or in combination. When both pathways were active, net transport was the sum of the rates observed when each acted separately. A ratio of three sodium ions pumped outward per two potassium ions pumped inward was confirmed.


1961 ◽  
Vol 38 (3) ◽  
pp. 629-636
Author(s):  
J. E. TREHERNE

1. The rate of loss of sodium ions from the abdominal nerve cord of Periplaneta has been determined by following the decline in radioactivity of 24Na-loaded nerve cords isolated in flowing Ringer solution. 2. In all of the experiments there was an initial rapid exponential decline in radioactivity which eventually gave way to a second slower phase. 3. The initial exponential extrusion of sodium ions was appreciably reduced by the presence of potassium cyanide and 2:4-dinitrophenol. 4. The rate of sodium efflux was not reduced in sodium-free solutions, but was decreased in the absence of external potassium ions. 5. It is concluded that sodium ions are extruded from the nerve cord by a metabolically maintained secretory mechanism which is also associated with the uptake of potassium ions.


Parallel measurements have been made of the oxygen consumption and efflux of radioactive sodium in pairs of frog sartorius muscles. Calculation of the amount of secretory work necessary for an active extrusion of sodium at the observed rate showed that it would involve the utilization of about one-tenth of the energy available from resting metabolism.This figure may reasonably be regarded as a lower limit to the efficiency of the secretory mechanism. Some of the measurements were made in a potassium-free Ringer’s solution, and others with an external potassium concentration of 10mM. In the potassium-rich medium, both the sodium efflux and the oxygen consumption were increased, the proportion of the energy production required for sodium extrusion remaining roughly constant. The action of dinitrophenol and other metabolic inhibitors on the sodium efflux in sartorius muscles was examined, but there were no very obvious effects.


1961 ◽  
Vol 38 (2) ◽  
pp. 315-322
Author(s):  
J. E. TREHERNE

1. The influx of sodium and potassium ions into the central nervous system of Periplaneta americana has been studied by measuring the increase in radioactivity within the abdominal nerve cord following the injection of 24NA and 42K. into the haemolymph. 2. The calculated influx of sodium ions was approximately 320 mM./l. of nerve cord water/hr. and of potassium ions was 312 mM./l. of nerve cord water/hr. These values are very approximately equivalent to an influx per unit area of nerve cord surface of 13.9 x 10-2 M cm. -2 sec.-1 for sodium and 13.5 x 10-12 M cm. -2 sec.-1 for potassium ions. 3. The relatively rapid influxes of these ions are discussed in relation to the postulated function of the nerve sheath as a diffusion barrier. It is suggested that a dynamic steady state rather than a static impermeability must exist across the sheath surrounding the central nervous system in this insect.


1969 ◽  
Vol 54 (1) ◽  
pp. 306-326 ◽  
Author(s):  
R. L. Post ◽  
S. Kume ◽  
T. Tobin ◽  
B. Orcutt ◽  
A. K. Sen

In plasma membranes of intact cells an enzymatic pump actively transports sodium ions inward and potassium ions outward. In preparations of broken membranes it appears as an adenosine triphosphatase dependent on magnesium, sodium, and potassium ions together. In this adenosine triphosphatase a phosphorylated intermediate is formed from adenosine triphosphate in the presence of sodium ions and is hydrolyzed with the addition of potassium ions. The normal intermediate was not split by adenosine diphosphate. However, selective poisoning by N-ethylmaleimide or partial inhibition by a low magnesium ion concentration yielded an intermediate split by adenosine diphosphate and insensitive to potassium ions. Pulse experiments on the native enzyme supported further a hypothesis of a sequence of phosphorylated forms, the first being made reversibly from adenosine triphosphate in the presence of sodium ion and the second being made irreversiblyfrom the first and hydrolyzed in the presence of potassium ion. The cardioactive steriod inhibitor, ouabain, appeared to combine preferentially with the second form. Phosphorylation was at the same active site according to electrophoretic patterns of proteolytic phosphorylated fragments of both reactive forms. It is concluded that there is a conformational change in the active center for phosphorylation during the normal reaction sequence. This change may be linked to one required theoretically for active translocation of ions across the cell membrane.


1981 ◽  
Vol 61 (3) ◽  
pp. 307-312 ◽  
Author(s):  
R. B. Jones ◽  
J. Patrick ◽  
P. J. Hilton

1. The effect of extracellular potassium on the transport of sodium and potassium in rat thymocytes has been studied in vitro. 2. A significant increase in the rate constant for total and ouabain-sensitive sodium efflux was demonstrated at an extracellular potassium concentration of 1 mmol/l as compared with that at either 0 or 2 mmol/l. 3. At potassium concentrations below 3 mmol/l ouabain-sensitive sodium influx was observed suggesting sodium-sodium exchange catalysed by the sodium pump. 4. Both total and ouabain-insensitive potassium efflux rose with external potassium. A small ouabain-sensitive potassium efflux was observed at all levels of external potassium studied. 5. Total and ouabain-insensitive potassium influx increased with external potassium, but did not appear to saturate. Ouabain-sensitive potassium influx reached a maximum at an external potassium concentration of 2 mmol/l then decreased with increasing external potassium.


1973 ◽  
Vol 61 (2) ◽  
pp. 222-250 ◽  
Author(s):  
R. A. Sjodin ◽  
L. A. Beaugé

Net sodium influx under K-free conditions was independent of the intracellular sodium ion concentration, [Na]i, and was increased by ouabain. Unidirectional sodium influx was the sum of a component independent of [Na]i and a component that increased linearly with increasing [Na]i. Net influx of sodium ions in K-free solutions varied with the external sodium ion concentration, [Na]o, and a steady-state balance of the sodium ion fluxes occurred at [Na]o = 40 mM. When solutions were K-free and contained 10-4 M ouabain, net sodium influx varied linearly with [Na]o and a steady state for the intracellular sodium was observed at [Na]o = 13 mM. The steady state observed in the presence of ouabain was the result of a pump-leak balance as the external sodium ion concentration with which the muscle sodium would be in equilibrium, under these conditions, was 0.11 mM. The rate constant for total potassium loss to K-free Ringer solution was independent of [Na]i but dependent on [Na]o. Replacing external NaCl with MgCl2 brought about reductions in net potassium efflux. Ouabain was without effect on net potassium efflux in K-free Ringer solution with [Na]o = 120 mM, but increased potassium efflux in a medium with NaCl replaced by MgCl2. When muscles were enriched with sodium ions, potassium efflux into K-free, Mg++-substituted Ringer solution fell to around 0.1 pmol/cm2·s and was increased 14-fold by addition of ouabain.


Sign in / Sign up

Export Citation Format

Share Document