Synaptic relationships of the cerebral giant cells with motoneurones in the feeding system of Lymnaea stagnalis

1980 ◽  
Vol 85 (1) ◽  
pp. 169-186
Author(s):  
C. R. McCrohan ◽  
P. R. Benjamin

1.The cerebral giant cells (CGCs) of Lymnaea have a tonic, modulatory effect on the intensity of output from feeding motoneurones in the buccal ganglia. 2. Short latency, excitatory and probably monosynaptic connexions occur between the CGCs and three identified feeding motoneurones. Unitary excitatory postsynaptic potentials in these motoneurones, following CGC spikes, are of different sizes and durations, and hence have different summation properties. 3. The CGCs make long latency, excitatory polysynaptic connexions with four other feeding motoneurone types. 4. Bursts of spikes in the CGCs, resulting from phasic synaptic input, synchronous with the feeding cycle, amplify their modulatory effect on burst intensity in feeding motoneurones. 5. Thte for reinforcing their cyclic burst activity.

1989 ◽  
Vol 61 (4) ◽  
pp. 727-736 ◽  
Author(s):  
C. J. Elliott ◽  
P. R. Benjamin

1. We identify esophageal mechanoreceptor (OM) neurons of Lymnaea with cell bodies in the buccal ganglia and axons that branch repeatedly to terminate in the esophageal wall. 2. The OM cells respond phasically to gut distension. Experiments with a high magnesium/low calcium solution suggest that the OM neurons are primary mechanoreceptors. 3. In the isolated CNS preparation, the OM cells receive little synaptic input during the feeding cycle. 4. The OM cells excite the motoneurons active in the rasp phase of the feeding cycle. 5. The OM cells inhibit each of the identified pattern-generating and modulatory interneurons in the buccal ganglia. Experiments with a saline rich in magnesium and calcium suggest that the connections are monosynaptic. 6. Stimulation of a single OM cell to fire at 5-15 Hz is sufficient to terminate the feeding rhythm in the isolated CNS preparation. 7. We conclude that these neurons play a role in terminating feeding behavior.


1979 ◽  
Vol 80 (1) ◽  
pp. 93-118 ◽  
Author(s):  
P. R. BENJAMIN ◽  
R. M. ROSE

The central generation of burst activity was investigated in the buccal ganglia of Lymnaea. Eight different patterns of burst activity were generated by one or two consecutive phases of compound synaptic potentials resulting from activity of neurones outside the population of recorded neurones. These inputs acted upon the different endogenous properties of buccal neurones such as post-inhibitory rebound and spike adaptation. Effects of synaptic inputs were reinforced by electrotonic coupling of some buccal neurones of the same type.


1992 ◽  
Vol 336 (1277) ◽  
pp. 157-166 ◽  

All the identified feeding motoneurons of Lymnaea respond to bath or iontophoretically applied acetylcholine (ACh). Three kinds of receptors (one excitatory, one fast inhibitory and one slow inhibitory) were distinguished pharmacologically. The agonist TMA (tetram ethylam m onium ) activates all three receptors, being weakest at the slow inhibitory receptor. PTMA (phenyltrim ethylam monium ) is less potent than TMA and is ineffective at the slow inhibitory receptor, which is the only receptor sensitive to arecoline. At 0.5 mM the antagonists HMT (hexamethonium) and ATR (atropine) selectively block the excitatory response, while PTMA reduces the response to ACh at all three receptors. d-TC (curare) antagonizes only the fast excitatory and the fast inhibitory responses, but MeXCh (methylxylocholine) blocks the fast excitatory and slow inhibitory responses solely. For each of the feeding motoneurons, the sign of the cholinergic response (excitation or inhibition) is the same as the synaptic input received in the N1 phase of the feeding rhythm .


1972 ◽  
Vol 56 (3) ◽  
pp. 621-637
Author(s):  
MICHAEL S. BERRY

1. The buccal ganglia of Planorbis contain a population of electrically coupled small cells. This has been studied, in preparations of isolated ganglia, by recording intracellularly from the cells two at a time. 2. The population is usually silent but activity initiated in any one of its members tends to spread to the rest of the population in both ganglia. Failure of spread, or fatigue, gradually occurs on repetition. 3. The group has the properties of a trigger system, initiating prolonged patterned activity in large numbers of neurones in the buccal ganglia. This may normally initiate feeding. 4. In addition to central processes, both in the buccal ganglia and to the rest of the CNS, the system has peripheral axons in most of the buccal nerves. No synaptic input could be demonstrated. 5. Action potentials in some of the cells increase greatly in duration with repetition. The resulting electrotonic EPSP's, recorded in closely coupled trigger cells, correspondingly increase in size. The possible integrative significance of this is discussed, especially its effect in offsetting fatigue. 6. In some preparations spontaneous bursting occurred in trigger cells and this elicited burst activity in large neurones, including motoneurones. The system may have an intrinsic pacemaker.


1981 ◽  
Vol 92 (1) ◽  
pp. 203-228
Author(s):  
R. M. ROSE ◽  
P. R. BENJAMIN

The feeding cycle of Lymnaea is generated by a network of three types of interneurone, N1, N2 and N3. This network is driven by the slow oscillator (SO) interneurone described in the previous paper. Interaction between the different interneurones is dependent on both connectivity and endogenous properties, and utilizes such properties as post-inhibitory rebound and self-feedback within electrically-coupled populations. Each of the four components of the interneuronal network (SO, N1, N2 and N3) is responsible for a different phase of synaptic input to the follower cell population which was previously shown to directly control feeding movements.


1979 ◽  
Vol 79 (1) ◽  
pp. 23-40
Author(s):  
A.G. M. BULLOCH ◽  
D. A. DORSETT

Three phases of activity may be recognized in the buccal mass of Tritonia hombergi during the feeding cycle. These have been termed Protraction, Retraction and Flattening. Each phase is driven by a group of motoneurones along the posterior border of the buccal ganglia. The patterned bursting observed in the motoneurone groups during feeding activity is phased by synaptic inputs which are common to two or more groups. Evidence is presented which indicates these inputs are derived from three unidentified multi-action interneurone sources within each buccal ganglion, and whose action primarily determines the patterned output of the motoneurones. Electrical coupling between between synergistic motoneurones and, in one case, post-inhibitory rebound, contribute to the synchronization of group activity. Proprioceptive input to the motoneurones was not identified, but may project to the interneurones. Some small neurones having synaptic inputs on the motoneurones appropriate to two of the interneurones were found, but require confirmation in this role. The cerebral giant cells synapse on representatives of three motoneurone groups, and also activate the buccal interneurones driving the feeding cycle. The patterned activity of the motoneurones can occur in the absence of cerebral cell activity.


1995 ◽  
Vol 73 (1) ◽  
pp. 112-124 ◽  
Author(s):  
M. S. Yeoman ◽  
A. Vehovszky ◽  
G. Kemenes ◽  
C. J. Elliott ◽  
P. R. Benjamin

1. We used intracellular recording techniques to examine the role of a novel type of protraction phase interneuron, the lateral N1 (N1L) in the feeding system of the snail Lymnaea stagnalis. 2. The N1Ls are a bilaterally symmetrical pair of electrotonically coupled interneurons located in the buccal ganglia. Each N1L sends a single axon to the contralateral buccal ganglia. Their neurite processes are confined to the buccal neuropile. 3. In the isolated CNS, depolarization of an N1L is capable of driving a full (N1-->N2-->N3), fast (1 cycle every 5 s) fictive feeding rhythm. This was unlike the previously described N1 medial (N1M) central pattern generator (CPG) interneurons that were only capable of driving a slow, irregular rhythm. Attempts to control the frequency of the fictive feeding rhythm by injecting varying amounts of steady current into the N1Ls were unsuccessful. This contrasts with a modulatory neuron, the slow oscillator (SO), that has very similar firing patterns to the N1Ls, but where the frequency of the rhythm depends on the level of injected current. 4. The N1Ls' ability to drive a fictive feeding rhythm in the isolated preparation was due to their strong, monosynaptic excitatory chemical connection with the N1M CPG interneurons. Bursts of spikes in the N1Ls generated summating excitatory postsynaptic potentials (EPSPs) in the N1Ms to drive them to firing. The SO excited the N1M cells in a similar way, but the EPSPs are strongly facilitatory, unlike the N1L-->N1M connection. 5. Fast (1 cycle every 5 s) fictive feeding rhythms driven by the N1L occurred in the absence of spike activity in the SO modulatory neuron. In contrast, the N1L was usually active in SO-driven rhythms. 6. The ability of the SO to drive the N1L was due to strong electrotonic coupling, SO-->N1L. The weaker coupling in the opposite direction, N1L-->SO, did not allow the N1L to drive the SO. 7. Experiments on semintact lip-brain preparations allowed fictive feeding to be evoked by application of 0.1 M sucrose to the lips (mimicking the normal sensory input) rather than by injection of depolarizing current. Rhythmic bursting, characteristic of fictive feeding, began in both the SO and N1L at exactly the same time, indicating that these two cell types are activated in "parallel" to drive the feeding rhythm. 8. The N1L is also part of the CPG network. It Excited the N2s and inhibited the N3 phasic (N3p) and N3 tonic (N3t) CPG interneurons like the N1Ms.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 78 (6) ◽  
pp. 3396-3407 ◽  
Author(s):  
M. J. Brierley ◽  
M. S. Yeoman ◽  
P. R. Benjamin

Brierley, M. J., M. S. Yeoman, and P. R. Benjamin. Glutamatergic N2v cells are central pattern generator interneurons of the Lymnaea feeding system: new model for rhythm generation. J. Neurophysiol. 78: 3396–3407, 1997. We aimed to show that the paired N2v (N2 ventral) plateauing cells of the buccal ganglia are important central pattern generator (CPG) interneurons of the Lymnaea feeding system. N2v plateauing is phase-locked to the rest of the CPG network in a slow oscillator (SO)-driven fictive feeding rhythm. The phase of the rhythm is reset by artificially evoked N2v bursts, a characteristic of CPG neurons. N2v cells have extensive input and output synaptic connections with the rest of the CPG network and the modulatory SO cell and cerebral giant cells (CGCs). Synaptic input from the protraction phase interneurons N1M (excitatory), N1L (inhibitory), and SO (inhibitory-excitatory) are likely to contribute to a ramp-shaped prepotential that triggers the N2v plateau. The prepotential has a highly complex waveform due to progressive changes in the amplitude of the component synaptic potentials. Most significant is the facilitation of the excitatory component of the SO → N2v monosynaptic connection. None of the other CPG interneurons has the appropriate input synaptic connections to terminate the N2v plateaus. The modulatory function of acetylcholine (ACh), the transmitter of the SO and N1M/N1Ls, was examined. Focal application of ACh (50-ms pulses) onto the N2v cells reproduced the SO → N2v biphasic synaptic response but also induced long-term plateauing (20–60 s). N2d cells show no endogenous ability to plateau, but this can be induced by focal applications of ACh. The N2v cells inhibit the N3 tonic (N3t) but not the N3 phasic (N3p) CPG interneurons. The N2v → N3t inhibitory synaptic connection is important in timing N3t activity. The N3t cells recover from this inhibition and fire during the swallow phase of the feeding pattern. Feedback N2v inhibition to the SO, N1L protraction phase interneurons prevents them firing during the retraction phase of the feeding cycle. The N2v → N1M synaptic connection was weak and only found in 50% of preparations. A weak N2v → CGC inhibitory connection prevents the CGCs firing during the rasp (N2) phase of the feeding cycle. These data allowed a new model for the Lymnaea feeding CPG to be proposed. This emphasizes that each of the six types of CPG interneuron has a unique set of synaptic connections, all of which contribute to the generation of a full CPG pattern.


2006 ◽  
Vol 96 (4) ◽  
pp. 2056-2071 ◽  
Author(s):  
Geidy E. Serrano ◽  
Mark W. Miller

This investigation examined the activity of a bilateral pair of motor neurons (B67) in the feeding system of Aplysia californica. In isolated ganglia, B67 firing exhibited a highly stereotyped bursting pattern that could be attributed to an underlying TTX-resistant driver potential (DP). Under control conditions, this bursting in the two B67 neurons was infrequent, irregular, and asynchronous. However, bath application of the neuromodulator dopamine (DA) increased the duration, frequency, rhythmicity, and synchrony of B67 bursts. In the absence of DA, depolarization of B67 with injected current produced rhythmic bursting. Such depolarization-induced rhythmic burst activity in one B67, however, did not entrain its contralateral counterpart. Moreover, when both B67s were depolarized to potentials that produced rhythmic bursting, their synchrony was significantly lower than that produced by DA. In TTX, dopamine increased the DP duration, enhanced the amplitude of slow signaling between the two B67s, and increased DP synchrony. A potential source of dopaminergic signaling to B67 was identified as B65, an influential interneuron with bilateral buccal projections. Firing B65 produced bursts in the ipsilateral and contralateral B67s. Under conditions that attenuated polysynaptic activity, firing B65 evoked rapid excitatory postsynaptic potentials in B67 that were blocked by sulpiride, an antagonist of synaptic DA receptors in this system. Finally, firing a single B65 was capable of producing a prolonged period of rhythmic synchronous bursting of the paired B67s. It is proposed that modulatory dopaminergic signaling originating from B65 during consummatory behaviors can promote rhythmicity and bilateral synchrony in the paired B67 motor neurons.


1984 ◽  
Vol 108 (1) ◽  
pp. 257-272
Author(s):  
C. R. MCCROHAN

Four identified neurone types (CV3, 7, 5 and 6), located in the ventral cerebral ganglia of Lymnaea stagnalis, are described. These cells have axonal projections in one or more of the nerves innervating the lips. In addition, they show rhythmic synaptic inputs leading to strong burst activity in phase with cyclic output from the buccal ganglia, suggesting a role in the control of the oral aperture during feeding. The innervation of lip muscle by one of the cell types (CV7) is confirmed electrophysiologically. The relationship of rhythmic activity in CV cells with that in the buccal feeding system is discussed.


Sign in / Sign up

Export Citation Format

Share Document