Coordination of Tissue Cell Polarity by Auxin Transport and Signaling

2019 ◽  
Author(s):  
Martin Balcerowicz
2019 ◽  
Author(s):  
Carla Verna ◽  
Sree Janani Ravichandran ◽  
Megan G. Sawchuk ◽  
Nguyen Manh Linh ◽  
Enrico Scarpella

AbstractCoordination of polarity between cells in tissues is key to multicellular organism development. In animals, coordination of this tissue cell polarity often requires direct cell-cell interactions and cell movements, which are precluded in plants by a wall that separates cells and holds them in place; yet plants coordinate the polarity of hundreds of cells during the formation of the veins in their leaves. Overwhelming experimental evidence suggests that the plant signaling molecule auxin coordinates tissue cell polarity to induce vein formation, but how auxin does so is unclear. The prevailing hypothesis proposes that GNOM, a regulator of vesicle formation during protein trafficking, positions auxin transporters of the PIN-FORMED family to the correct side of the plasma membrane. The resulting cell-to-cell, polar transport of auxin would coordinate tissue cell polarity and would induce vein formation. Here we tested this hypothesis by means of a combination of cellular imaging, molecular genetic analysis, and chemical induction and inhibition. Contrary to predictions of the hypothesis, we find that auxin-induced vein formation occurs in the absence of PIN-FORMED proteins or any known intercellular auxin transporter, that the residual auxin-transport-independent vein-patterning activity relies on auxin signaling, and that a GNOM-dependent signal that coordinates tissue cell polarity to induce vein formation acts upstream of both auxin transport and signaling. Our results reveal synergism between auxin transport and signaling, and their unsuspected control by GNOM, in the coordination of tissue cell polarity during vein patterning, one of the most spectacular and informative expressions of tissue cell polarization in plants.


2019 ◽  
Author(s):  
Carla Verna ◽  
Sree Janani Ravichandran ◽  
Megan G Sawchuk ◽  
Nguyen Manh Linh ◽  
Enrico Scarpella

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Carla Verna ◽  
Sree Janani Ravichandran ◽  
Megan G Sawchuk ◽  
Nguyen Manh Linh ◽  
Enrico Scarpella

Plants coordinate the polarity of hundreds of cells during vein formation, but how they do so is unclear. The prevailing hypothesis proposes that GNOM, a regulator of membrane trafficking, positions PIN-FORMED auxin transporters to the correct side of the plasma membrane; the resulting cell-to-cell, polar transport of auxin would coordinate tissue cell polarity and induce vein formation. Contrary to predictions of the hypothesis, we find that vein formation occurs in the absence of PIN-FORMED or any other intercellular auxin-transporter; that the residual auxin-transport-independent vein-patterning activity relies on auxin signaling; and that a GNOM-dependent signal acts upstream of both auxin transport and signaling to coordinate tissue cell polarity and induce vein formation. Our results reveal synergism between auxin transport and signaling, and their unsuspected control by GNOM in the coordination of tissue cell polarity during vein patterning, one of the most informative expressions of tissue cell polarization in plants.


Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 83-93 ◽  
Author(s):  
Tsvi Sachs

Cell polarization is the specialization of developmental events along one orientation or one direction. Such polarization must be an early, essential stage of tissue patterning. The specification of orientation could not occur only at the level of the genetic system and it must express a coordination of events in many cells. There is a positive feedback relation between cell polarization and the transport of the known hormone auxin: polarity determines oriented auxin transport while transport itself induces both new and continued polarization. Since cell polarization increases gradually, this feedback leads to the canalization of transport – and of the associated cell differentiation – along defined strands of specialized cells. Recent work has shown that the same canalized flow can also be an important determinant of cell shape. In primordial, embryonic regions cell growth is oriented along the flow of auxin from the shoot towards the root. In later developmental stages the cells respond to the same flow by growing in girth, presumably adjusting the capacity of the tissues to the flow of signals. Finally, disrupted flow near wounds results in the development of relatively unorganized callus. Continued callus development appears to require the participation of the cells, as sources and sinks of auxin and other signals. The overall picture to emerge suggests that cell patterning can result from competition between cells acting as preferred channels, sources and sinks for developmental signals.


2018 ◽  
Vol 28 (16) ◽  
pp. 2638-2646.e4 ◽  
Author(s):  
Catherine Mansfield ◽  
Jacob L. Newman ◽  
Tjelvar S.G. Olsson ◽  
Matthew Hartley ◽  
Jordi Chan ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
D. Dreymueller ◽  
K. Theodorou ◽  
M. Donners ◽  
A. Ludwig

Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.


2018 ◽  
pp. 51-71
Author(s):  
Arthur J. Molendijk ◽  
Olaf Tietz ◽  
Benedetto Ruperti ◽  
Ivan A. Paponov ◽  
Klaus Palme

2016 ◽  
Vol 28 (9) ◽  
pp. 2079-2096 ◽  
Author(s):  
Annis Richardson ◽  
Alexandra B. Rebocho ◽  
Enrico Coen

Development ◽  
2013 ◽  
Vol 140 (10) ◽  
pp. 2061-2074 ◽  
Author(s):  
K. Abley ◽  
P. B. De Reuille ◽  
D. Strutt ◽  
A. Bangham ◽  
P. Prusinkiewicz ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document