Prediction of collapsibility of moulds and cores of CO2 sands using a neural network

Author(s):  
R K Ohdar ◽  
P T Pushp

The CO2 process of making sand moulds and cores is a well-established process and suitable for all types of foundry. However, the collapsibility of CO2 sand is quite poor. A variety of additives are used to improve collapsibility of CO2 sands. Several other process parameters also affect collapsibility of CO2 sands. In the present investigation an attempt has been made to use an artificial neural network (ANN) model for prediction of the collapsibility of CO2 sand. Experiments were conducted with various input process parameters, such as binder content, gassing time, temperature and additive content using three different additives, namely coal dust, dextrin and alumina. The objective of the experiments was to generate basic data to train a back-propagation ANN model and finally predict collapsibility in terms of retained compressive strength of CO2 sands for the test data. A three-layer neural network model with six input neurons corresponding to six input process parameters, one output neuron corresponding to collapsibility and 19 hidden neurons has been suggested, which gives a maximum error of 2 per cent in prediction of test data. Results indicate that prediction of the collapsibility of CO2 sand with an ANN model is feasible. Predicted values match experimental values quite closely.

2015 ◽  
Vol 766-767 ◽  
pp. 1076-1084
Author(s):  
S. Kathiresan ◽  
K. Hariharan ◽  
B. Mohan

In this study, to predict the surface roughness of stainless steel-304 in Magneto rheological Abrasive flow finishing (MRAFF) process, an artificial neural network (ANN) and regression models have been developed. In this models, the parameters such as hydraulic pressure, current to the electromagnet and number of cycles were taken as variables of the model.Taguchi’s technique has been used for designing the experiments in order to observe the different values of surface roughness . A neural network with feed forward with the help of back propagation was made up of 27 input neurons, 7 hidden neurons and one output neuron. The 6 sets of experiments were randomly selected from orthogonal array for training and residuals were used to analyze the performance. To check the validity of regression model and to determine the significant parameter affecting the surface roughness, Analysis of variance (ANOVA) andF-test were made. The numerical analysis depict that the current to the electromagnet was an paramount parameter on surface roughness.Key words: MRAFF, ANN, Regression analysis


2020 ◽  
pp. 1632-1649
Author(s):  
Veronica Chan ◽  
Christine W. Chan

This paper discusses development and application of a decomposition neural network rule extraction algorithm for nonlinear regression problems. The algorithm is called the piece-wise linear artificial neural network or PWL-ANN algorithm. The objective of the algorithm is to “open up” the black box of a neural network model so that rules in the form of linear equations are generated by approximating the sigmoid activation functions of the hidden neurons in an artificial neural network (ANN). The preliminary results showed that the algorithm gives high fidelity and satisfactory results on sixteen of the nineteen tested datasets. By analyzing the values of R2 given by the PWL approximation on the hidden neurons and the overall output, it is evident that in addition to accurate approximation of each individual node of a given ANN model, there are more factors affecting the fidelity of the PWL-ANN algorithm Nevertheless, the algorithm shows promising potential for domains when better understanding about the problem is needed.


2008 ◽  
Vol 32 (3-4) ◽  
pp. 523-536 ◽  
Author(s):  
Hazim El Mounayri ◽  
M. Affan Badar ◽  
Gustavo A. Rengifo

The quality, productivity and safety of machining can be significantly improved through the optimization of cutting conditions. The first step in achieving such an objective is the development of accurate and reliable models for predicting the critical process parameters. In this paper, an innovative Artificial Neural Network (ANN) model that predicts both cutting force and surface roughness in end milling is developed and validated. A set of five input variables is selected to represent the machining conditions while twelve quantities representing two key process parameters, namely, cutting force and surface roughness, form the variables of the network output. Full factorial design of experiments is used to generate data for both training and validation. Successful training of the neural network is demonstrated through comparison of simulated and experimental results for four different output variables, namely cutting force, surface roughness, feed marks, and tooth passing frequency. The predictive ability of the model is verified experimentally by comparing simulated output variables with their experimental counterparts. A good agreement is observed.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


2015 ◽  
Vol 15 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Adel Ghith ◽  
Thouraya Hamdi ◽  
Faten Fayala

Abstract An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.


2018 ◽  
Vol 178 ◽  
pp. 01017 ◽  
Author(s):  
John Kechagias ◽  
Aristidis Tsiolikas ◽  
Panagiotis Asteris ◽  
Nikolaos Vaxevanidis

A methodology is presented to optimize the performance of an Artificial Neural Network (ANN) using Design of Experiments (DOE). 8 different feed forward back propagation (FFBP) ANNs were developed and tested according to the L8 full factorial orthogonal array. The 3 parameters tested were: Number of Hidden Neurons, Learning rate, and Momentum; each one having two levels. By utilizing the analysis of means (ANOM) and the analysis of variances (ANOVA), the optimum levels of ANN parameters were determined. The developed ANN was applied for predicting cutting forces and average surface roughness in turning Ti-6Al-4V alloy.


2011 ◽  
Vol 110-116 ◽  
pp. 2693-2698 ◽  
Author(s):  
Dillip Kumar Ghose ◽  
P.C. Swain ◽  
Sudhansu Sekhar Panda

Artificial Neural Network (ANN) model is used to predict the suspended sediment load for the survey data collected on daily basis in the river Mahanadi. Genetic algorithm has been used to find the optimal level of process parameters such as water discharge and temperature for a minimum sedimentation load condition. Optimal level of process parameters obtained from the GA has been used in a trained neural network to obtain the sedimentation load condition. A comparative analysis is then made between GA and ANN for achieving minimum sedimentation load with the given process parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Sadighzadeh ◽  
A. Salehizadeh ◽  
M. Mohammadzadeh ◽  
F. Shama ◽  
S. Setayeshi ◽  
...  

Artificial neural network (ANN) is applied to predict the number of produced neutrons from IR-IECF device in wide discharge current and voltage ranges. Experimentally, discharge current from 20 to 100 mA had been tuned by deuterium gas pressure and cathode voltage had been changed from −20 to −82 kV (maximum voltage of the used supply). The maximum neutron production rate (NPR) of 1.46 × 107 n/s had occurred when the voltage was −82 kV and the discharge current was 48 mA. The back-propagation algorithm is used for training of the proposed multilayer perceptron (MLP) neural network structure. The obtained results show that the proposed ANN model has achieved good agreement with the experimental data. Results show that NPR of 1.855 × 108 n/s can be achieved in voltage and current of 125 kV and 45 mA, respectively. This prediction shows 52% increment in maximum voltage of power supply. Also, the optimum discharge current can increase 1270% NPR.


2009 ◽  
Vol 12 (4) ◽  
pp. 94-106 ◽  
Author(s):  
Duc Van Le

Artificial Neural Network (ANN) model along with Back Propagation Algorithm (BPA) has been applied in many fields, especially in hydrology and water resources management to simulate or forecast rainfall runoff process, discharge and water level - time series, and other hydrological variables. Several researches have recently been focusing to compare the applicability of ANN model with other theory-driven and data-driven approaches. The comparison of ANN with M5 model trees for rainfall-runoff forecasting, with ARMAX models for deriving flow series, with AR models and regression models for forecasting and estimating daily river flows have been carried out. The better results that were implemented by ANN model have been concluded. So, this research trend is continued for the comparison of ANN model with Tank, Harmonic, Thomas and Fiering models in simulation of the monthly runoffs at Dong Nai river basin, Viet Nam. The results proved ANN being the best choice among these models, if suitable and enough data sources were available.


10.17158/320 ◽  
2014 ◽  
Vol 18 (2) ◽  
Author(s):  
Eric John G. Emberda ◽  
Den Ryan L. Dumas ◽  
Timothy Pierce M. Rentillo

<p>This study compared the use of Linear Regression and Feed Forward Backpropagation Artificial Neural Network (ANN) in forecasting the coconut yield and copra yield of a selected area in Davao region. Raw data were gathered from the Philippine Coconut Authority, Davao Research Center. An ANN model was created and tested repeatedly to the best combination of nodes. Accuracy of the forecast between the two methods was compared by looking at the mean square error and the standard error for variable x and y. Results showed that the use of Feed Forward Back Propagation Artificial Neural Network gives better accuracy of the forecast data.</p>


Sign in / Sign up

Export Citation Format

Share Document