Analysis of wire erosion and workpiece surface roughness in wire electrical discharge machining

Author(s):  
N Tosun ◽  
C Cogun

In this study, the effects of machining parameters on the wire wear, on the size of erosion craters on the wire and on the workpiece surface roughness were investigated experimentally in wire electrical discharge machining (WEDM). An attempt was made to correlate the crater volume and the pulse energy. The experiments were conducted under different settings of pulse duration, open-circuit voltage, wire speed and dielectric flushing pressure. The variations of the wire wear, the size of erosion craters on the wire and the workpiece surface roughness with machining parameters were modelled mathematically by using regression analysis. The relationship between the workpiece surface roughness and the crater size was established. The analysis of variance (ANOVA) and F-test were performed to obtain statistically significant process parameters and the percentage contribution of these parameters to the performance outputs.

2012 ◽  
Vol 576 ◽  
pp. 527-530
Author(s):  
Mohammad Yeakub Ali ◽  
W.Y.H. Liew ◽  
S.A. Gure ◽  
B. Asfana

This paper presents the estimation of kerf width in micro wire electrical discharge machining (micro WEDM) in terms of machining parameters of capacitance and gap voltage. An empirical model is developed by the analysis of variance (ANOVA) of experimental data. Using a wire electrode of 70 µm diameter, a minimum kerf width is found to be 92 µm for the micro WEDM parameters of 0.01 µF capacitance and 90.25 V gap voltage. Around 30% increament of the kerf is found to be high. The analysis also revealed that the capacitance is more influential parameter than gap voltage on kerf width produced by micro WEDM. As the gap voltage determines the breakdown distance and affects the wire vibration, the wire vibration factor is to be considered in the analysis and in formulation of model in future study.


2011 ◽  
Vol 383-390 ◽  
pp. 6695-6703 ◽  
Author(s):  
Abolfazl Golshan ◽  
Soheil Gohari ◽  
Ayob Amran

In this study, the appropriate input parameters for achieving minimum surface roughness and high material removal rate are selected for wire electrical discharge machining of cold-work steel 2601. Mathematical modeling acquired by experimental result analysis is used to find the relation between input parameters including electrical current, gap voltage, open-circuit voltage and pulse-off time and output parameters. Subsequently, with exploitation of variance analysis, importance and effective percentages of each parameter are studied. The combination of optimum machining parameters is acquired using the analysis of ratios of signal-to-noise. Finally, according to multiple-objective optimization, outputs acquired from Non-dominated Sorting Genetic Algorithm led in achieving appropriate models. The optimization results showed suggested method has a high performance in problem solving.


2019 ◽  
Vol 19 (4) ◽  
pp. 110-121
Author(s):  
Dariusz POROS ◽  
Stanislaw ZABORSKI ◽  
Magdalena WISNIEWSKA

In this study, the wear of wire electrodes was investigated experimentally in wire electrical discharge machining. Naked brass wire, 0.25mm diameter, zinc oxide coated brass wire and brass CuZn20 coated with brass CuZn50 wire were applied in the conducted research. The wire wear ratio of WEDM of titanium alloy Ti6Al4V and cemented carbide B40 was described. As important WEDM parameters, the following variables were chosen: discharge time ton, average working voltage U. The following properties of machined materials, such as: melting point Tt, electrical conductivity σ, thermal conductivity K, thermal expansion coefficient k, density ρ, heat capacity cp, were also selected to develop the semi – empirical model of the wear of wire electrodes. The variation of the wire wear with cutting different materials by applying three different wire electrodes and process parameters was modelled semi – empirically by employing dimensional analysis.


2018 ◽  
Vol 1 (1) ◽  
pp. 27-38
Author(s):  
Jun Qi Tan ◽  
Mohd Yazid Abu

The experimental carried out to aim at the selection of the best condition machining parameter combination for wire electrical discharge machining (WEDM) of titanium alloy (Ti–6Al–4V). By using Design Expert 10 software, a series of experiments were performed by selecting pulse-on time, pulse-off time, servo voltage and peak current as parameters. The responses that considered were cutting speed, material removal rate, sparking gap and surface roughness. Based on ANOVA analysis, the effect from the parameters on the responses was determined. The optimum machining parameters setting for the maximum cutting speed, minimum sparking gap and minimum surface roughness were found by proceed optimization experiment. Then, each optimization response had their own combination setting on WEDM to cut titanium alloy. 3D response surface graph such as dome and bowl shape represent maximum and minimum point for the solutions had shown in the report. Finally, predicted and actual value from the experiment have been calculated for validation.


2011 ◽  
Vol 264-265 ◽  
pp. 831-836 ◽  
Author(s):  
Suleiman Abdulkareem ◽  
Ahsan Ali Khan ◽  
Zakaria Mohd Zain

Wire electrical discharge machining (WEDM) is a thermal process in which the workpiece and the wire (tool) experience an intense local heating in the discharge channel. The high power density results in the erosion of a part of the material from both electrodes by local melting and vaporization. Whilst good surface finish and high material removal rate of the workpiece is a major requirement, the effect of EDM machining factors on these requirements cannot be overlooked. This study investigate the effect of two different machining methods of dry and wet WEDM process as well as the effect of on-time and voltage on the surface roughness of the workpiece. The machining factors used for this study are the pulse current, on-time and voltage. The results of the effect of the two machining methods on the responses are investigated and reported in this paper.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 900 ◽  
Author(s):  
Sonia Ezeddini ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar ◽  
Sahbi Ben Salem

This work presents a comprehensive research using the Taguchi method and response surface methodology (RSM) to predict surface roughness parameters in wire electrical discharge machining (WEDM) manufacturing for a novel Ti–Al intermetallic based composite that was developed at Supmeca, a composite design laboratory for aeronautical applications in Paris, France. At the first stage, a detailed microstructure analysis was carried out on this composite. After that, the cutting parameters of the WEDM process were determined: Start-up voltage U, Pulse-on-time Ton, speed advance S and flushing pressure p were selected to find out their effects on surface roughness Ra. In the second stage, analyses of variance (ANOVA) were used as the statistical method to define the significance of the machining parameters. After that, an integrated method combining the Taguchi method and the response surface methodology (RSM) was used to develop a predictive model of the finish surface. The microstructure of the surface and subsurface of the cut edge, the micro-cracks, debris and craters and surface roughness of the specimens cut at the altered conditions were evaluated by scanning electron microscopy (SEM) and 3D-Surfscan.


Sign in / Sign up

Export Citation Format

Share Document