Circular solid plate supported along an edge arc and deflected by a central transverse force

Author(s):  
A Strozzi ◽  
P Vaccari

A purely flexural structural analysis is carried out for a thin solid circular plate, deflected by a static central transverse concentrated force, and simply supported along an edge arc, the remaining part of its periphery being free. This problem is modelled in terms of a Fredholm integral equation of the first kind, where the kernel is expressed analytically, and where the unknown function is the reaction force along the support. The initial equation is then modified into a new Fredholm integral equation of the first kind, which implicitly respects the condition imposed on the plate edge deflections by the rigidity of the support, but which has still to be coupled with the translational and rotational equilibrium conditions. By showing that a certain operator is a contraction mapping, it is demonstrated that this new integral equation coupled only with the translational equilibrium condition possesses a unique solution expressed in terms of a smooth function with square root singularities at the support ends. It is also shown that this unique solution, when expressed via Chebyshev polynomials, does not fulfil the rotational equilibrium condition, apart from the limit case when the plate is axisymmetrically supported. It is concluded that, in the framework of the purely flexural plate theory, the title problem does not possess any smooth solution with square root singularities at the ends. An approximate solution is nevertheless computed with the collocation method, by accepting limited undulations of the plate periphery.

2000 ◽  
Vol 68 (5) ◽  
pp. 809-812 ◽  
Author(s):  
G. Monegato ◽  
A. Strozzi

A purely flexural mechanical analysis is presented for a thin, solid, circular plate, deflected by a central transverse concentrated force, and bilaterally supported along two antipodal periphery arcs, the remaining part of the boundary being free. This problem is modeled in terms of a singular integral equation of the Prandtl type, which possesses a unique solution expressed in terms of a reaction force containing a factor exhibiting square root endpoint singularities. This solution is then shown not to respect the requested boundary constraints. It is therefore concluded that, within the framework of the purely flexural plate theory, the title problem cannot admit the weighted L2 solution here examined. It cannot, however, be excluded that a solution to the title problem exists, which possesses stronger endpoint singularities than those examined in this paper, or is of a more general form than the one considered here.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-7
Author(s):  
Vladimir Uskov

The article is devoted to the study of a system of two inhomogeneous Fredholm integral equations of the first kind with two required functions depending on one variable. Integral equations describe the restoration of a blurred image, production costs, etc. Fredholm integral equations with one desired function have been considered in many works, but relatively few works have been devoted to systems of such equations. The questions of stability for the solution of systems and the construction of a regularizing system of equations were investigated, but the solution was not constructed in an explicit form. In this paper, the kernels depend on two variables. The case is considered: in the kernels and inhomogeneities, the variables are separated in the equations; these functions are decomposed on the basis of two functions on the interval of integration. Examples of basic functions are given. A condition is determined under which the system has a unique solution in the chosen basis, formulated as a theorem. The solution is found in the form of an expansion in this basis. To illustrate the results obtained, an example is considered


2006 ◽  
Vol 6 (3) ◽  
pp. 264-268
Author(s):  
G. Berikelashvili ◽  
G. Karkarashvili

AbstractA method of approximate solution of the linear one-dimensional Fredholm integral equation of the second kind is constructed. With the help of the Steklov averaging operator the integral equation is approximated by a system of linear algebraic equations. On the basis of the approximation used an increased order convergence solution has been obtained.


Sign in / Sign up

Export Citation Format

Share Document