Study of a permanent magnet spring mechanism and its application to hydraulic valves

Author(s):  
Q Wang ◽  
F Yang ◽  
Q Yang ◽  
H Guan ◽  
J Chen

Through study on structure, mechanism, and the calculation method of the magnetic force of a permanent-magnet spring, it can be known that rare-earth permanent-magnet springs can be used for replacing springs used in mechanical equipment, especially in hydraulic valves. The use of magnetic springs can decrease the size of the device and can also reduce noise and vibration. Meanwhile, magnetic springs are more sensitive to load and have a long useful time without fatigue wear.

2020 ◽  
Vol 7 ◽  

A three-dimensional field solution is presented foraxially polarized permanent magnet cylinders. The fieldcomponents are expressed in terms of finite sums of elementaryfunctions and are easily programmable. They can be used todetermine the operating point of rare-earth magnet cylinders.They are also useful for performing rapid parametriccalculations of field strength as a function of materialproperties and dimensions. The field components aredeveloped for different magnet arrangements by taking intoaccount the back iron. Also the method of images is used. Usingthe field equations, three-dimensional analytical expressionsare derived for computing the magnetic force between axiallypolarized permanent-magnet cylinders for different magneticarrangements. The field calculated results are in goodagreement with the experimental data.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.


1984 ◽  
Author(s):  
J. Fidler ◽  
R. Groessinger ◽  
H. Kirchmayr ◽  
P. Skalicky

2020 ◽  
Vol 6 ◽  
pp. 1365-1369
Author(s):  
Vladimir Prakht ◽  
Vladimir Dmitrievskii ◽  
Vadim Kazakbaev ◽  
Mohamed N. Ibrahim

2021 ◽  
Vol 12 (2) ◽  
pp. 52
Author(s):  
Ali Al-Qarni ◽  
Ayman EL-Refaie

This paper covers a new emerging class of electrical machines, namely, Magnetic Gears (MGs) and Magnetically Geared Machines (MGMs). This particular kind of gears/machines is capable of either scaling up or down the revolutions-per-minute to meet various load profiles as in the case of mechanical gearboxes, but with physical isolation between the rotating components. This physical isolation between the rotational components leads to several advantages in favor of MGs and MGMs over mechanical gearboxes. Although MGs and MGMs can potentially provide a solution for some of the practical issues of mechanical gears, MGs and MGMs have two major challenges that researchers have been trying to address. Those challenges are the high usage of rare-earth Permanent Magnet (PM) materials and the relatively complex mechanical structure of MGs and MGMs, both of which are a consequence of the multi-airgap design. This paper presents designs that reduce the PM rare-earth content for Electric Vehicles (EVs). Additionally, the paper will ensure having practical designs that do not run the risk of permanent demagnetization. The paper will also discuss some new designs to simplify the mechanical structure.


Sign in / Sign up

Export Citation Format

Share Document