scholarly journals Magnetic Gears and Magnetically Geared Machines with Reduced Rare-Earth Elements for Vehicle Applications

2021 ◽  
Vol 12 (2) ◽  
pp. 52
Author(s):  
Ali Al-Qarni ◽  
Ayman EL-Refaie

This paper covers a new emerging class of electrical machines, namely, Magnetic Gears (MGs) and Magnetically Geared Machines (MGMs). This particular kind of gears/machines is capable of either scaling up or down the revolutions-per-minute to meet various load profiles as in the case of mechanical gearboxes, but with physical isolation between the rotating components. This physical isolation between the rotational components leads to several advantages in favor of MGs and MGMs over mechanical gearboxes. Although MGs and MGMs can potentially provide a solution for some of the practical issues of mechanical gears, MGs and MGMs have two major challenges that researchers have been trying to address. Those challenges are the high usage of rare-earth Permanent Magnet (PM) materials and the relatively complex mechanical structure of MGs and MGMs, both of which are a consequence of the multi-airgap design. This paper presents designs that reduce the PM rare-earth content for Electric Vehicles (EVs). Additionally, the paper will ensure having practical designs that do not run the risk of permanent demagnetization. The paper will also discuss some new designs to simplify the mechanical structure.

2013 ◽  
Vol 769 ◽  
pp. 3-10 ◽  
Author(s):  
Jan Tremel ◽  
Benjamin Hofmann ◽  
Florian Risch

Due to rapid developments within the family of rare-earth materials innovative electrical machines can nowadays be used as high efficient generators in various power, as well as rugged constructed machines for automobile battery based propulsion in hybrid and full electric vehicles. The production of different motor concepts spread into different design variants and creates complex variations especially regarding the rotor. Deriving from various research projects, the handling of the permanent magnet components is investigated, including the development of new assembly and fixation methods.


2015 ◽  
Vol 1 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Yuyang Bian ◽  
Shuqiang Guo ◽  
Lan Jiang ◽  
Kai Tang ◽  
Weizhong Ding

2019 ◽  
Vol 24 ◽  
pp. 961-977
Author(s):  
Lorenzo Berzi ◽  
Caterina Antonia Dattilo ◽  
Francesco Del Pero ◽  
Massimo Delogu ◽  
Manuel Ignacio Gonzalez

2016 ◽  
Vol 32 (4) ◽  
pp. 29-44 ◽  
Author(s):  
Baolu Zhou ◽  
Zhongxue Li ◽  
Yiqing Zhao ◽  
Cong Zhang ◽  
Yixin Wei

Abstract Rare earth elements (REEs) provide important properties to clean energy technologies such as wind turbine and hybrid electric vehicles. The global REE demand will grow rapidly during the global transformation toward a greener economy in the next decades. This high demand will require a steady supply chain in the long run. China has a monopoly of global REE production and extraction. The global REE supply chain runs the risk of disruption along with Chinese REE policy evolution. To overcome this supply chain vulnerability, new strategies and measures should be adopted to satisfy future REE supply/demand. There is a pressing need to explore REE deposits, develop efficient REE recycling techniques from end-of-life products, improve substitution technologies for REEs, and reduce the number of critical REEs used in devices. Such measures are facing significant challenges due to environmental factors and an unbalanced market, and overcoming them requires efforts from government and REE companies.


Sign in / Sign up

Export Citation Format

Share Document