A novel approach to disturbance rejection in idle speed control towards reduced idle fuel consumption

Author(s):  
C Manzie ◽  
H C Watson

Idle speed control remains one of the most challenging problems in the automotive control field owing to its multiple-input, multiple-output structure and the step nature of the disturbances applied. In this paper a simulation model is described for a 4.0 l production engine at idle which includes the standard bypass air valve and spark advance dynamics, as well as the e ects of operating point on cycle-by-cycle combustion-generated torque variations. A model predictive control scheme is then developed for the idle bypass valve and spark advance. The idle speed control algorithm is based on rejecting the torque disturbance using model predictive control for the bypass valve duty cycle while minimizing the transient e ects of the disturbance by adjusting the spark advance. Simulation results are presented to demonstrate the effects of different elements of the controller such as levels of spark offset from minimum spark advance for best torque at idle and feedforward load previews. Compensation of the effects of cyclic variation in combustion torque is also implemented in the controller and its benefits are discussed.

2020 ◽  
Vol 41 (3) ◽  
pp. 960-979
Author(s):  
Amir‐Mohammad Shamekhi ◽  
Amir Taghavipour ◽  
Amir H. Shamekhi

2010 ◽  
Vol 43 (7) ◽  
pp. 131-136 ◽  
Author(s):  
Maria Karlsson ◽  
Kent Ekholm ◽  
Petter Strandh ◽  
Rolf Johansson ◽  
Per Tunestål

2021 ◽  
pp. 107754632110005
Author(s):  
Hong-Cheol Na ◽  
Hai-Bo Yuan ◽  
Gyuhae Park ◽  
Young-Bae Kim

When developing an entire vehicle system, testing the structure of the vehicle or each component as a module or individually is necessary to determine the reliability and ensure the endurance of the entire vehicle. Various tests have been conducted to check the durability of the parts. However, the most important part is the verification of the fatigue limit of the load vibration from the road surface when the vehicle is being driven. Verification can be achieved by experimenting while driving on a real road with a prototype vehicle best suited to the actual conditions. However, issues such as problems in time, space, and environmental constraints, inconsistency in driving characteristics of the test driver, and continuous monitoring exist. For testing the load vibration of the road surface in automobile parts in the laboratory, hydraulic servo actuators are used because they provide vibrational loads in multiple directions by configuring them in multiple axes rather than a single axis. In this article, a multiple-input multiple-output model predictive control–proportional–integral–derivative hybrid controller is proposed as the method for optimal control of a multi-axis hydraulic servo actuator used in a random road signal reproduction experiment. Its performance is compared with the simple proportional–integral–derivative controller. A method for obtaining an efficient black box multiple-input multiple-output system model using LabVIEW in a laboratory in the field is also introduced, and the effectiveness of the model predictive control–proportional–integral–derivative hybrid controller is shown by reproducing the actual road load.


Sign in / Sign up

Export Citation Format

Share Document