Simulation of a prototype electrically powered integrated actuator for civil aircraft

Author(s):  
R Crowder ◽  
C Maxwell

Developments in the design and proposed operation of large civil aircraft have resulted in aircraft manufacturers and equipment suppliers developing new system concepts, one of which is the all or more electric aircraft. In the all or more electric aircraft the distribution of power for flight actuation will be through the electrical system, as opposed to the currently used bulk hydraulic system. In order to implement power-by-wire, high-performance electrically powered actuators will be required. The paper discusses the design details, and the simulation of an electrohydrostatic actuator suitable for use in primary flight control systems of a civil aircraft. The paper presents experimental and simulation results, and identifies the parameters that will critically affect the performance of an actuator.

Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 122
Author(s):  
Xiaozhe Sun ◽  
Xingjian Wang ◽  
Zhiyuan Zhou ◽  
Zhihan Zhou

The aircraft hydraulic system is very important for the actuation system and its failure has led to a number of catastrophic accidents in the past few years. The reasons for hydraulic loss can be leakage, blockage, and structural damage. Fortunately, the development of more electric aircraft (MEA) provides a new means of solving this difficult problem. This paper designs an active fault tolerant control (AFTC) method for MEA suffering from total hydraulic loss and actuation system failure. Two different kinds of scenarios are considered: leakage/blockage and vertical tail damage. With the application of the dissimilar redundant actuation system (DRAS) in MEA, a switching mechanism can be used to change the hydraulic actuation (HA) system into an electro-hydrostatic actuation (EHA) system when the whole hydraulic system fails. Taking account of the gap between HA and EHA, a degraded model is built. As for vertical tail damage, engine differential thrust control is adopted to help regain lateral-directional stability. The engine thrust dynamics are modeled and the mapping relationship between engine differential thrust and rudder deflection is formulated. Moreover, model reference control (MRC) and linear quadratic regulator (LQR) are used to design the AFTC method. Comparative simulation with the NASA generic transportation model (GTM) is carried out to prove the proposed strategy.


2018 ◽  
Vol 2018 (13) ◽  
pp. 520-523 ◽  
Author(s):  
Bo Liu ◽  
Maohang Qiu ◽  
Lei Jing ◽  
Xiaoqing Wang ◽  
Min Chen

Author(s):  
Jian Fu ◽  
Jean-Charles Maré ◽  
Yongling Fu

In the field of more electric aircraft, electromechanical actuators (EMAs) are becoming more and more attractive because of their outstanding benefits of aircraft fuel reduction, maintenance costs saving, and system flexibility improvement. For aerospace electromechanical actuator applications, mechanical power transmission is critical for safety, in which reflected inertia to load, heat generated by energy losses and faults due to jamming, free-play and free-run are specific issues. According to the system-engineering process and simulation-aided design, this communication proposes an incremental approach for the virtual prototyping of EMA mechanical power transmission. Resorting to the Bond-graph formalism, the parasitic effects are progressively introduced and realism of models is increased step-by-step. Finally, the numerical implementations are presented and compared with basic, advanced and full models of mechanical power transmission in AMESim environment. Multi-level submodels are available and can be re-used for preliminary sizing, thermal balance verification and response to fault analysis.


2008 ◽  
Author(s):  
Marco Amrhein ◽  
Jason R. Wells ◽  
Eric A. Walters ◽  
Anthony F. Matasso ◽  
Tim R. Erdman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document