Plate/shell element of variable thickness based on the absolute nodal coordinate formulation

Author(s):  
L K Abbas ◽  
X Rui ◽  
Z S Hammoudi
Author(s):  
Zhenxing Shen ◽  
Xiaofeng Xing ◽  
Boyu Li

A novel modelling approach to beams with thin cross-sections is proposed in the absolute nodal coordinate formulation (ANCF), where the Lagrange interpolating and curve fitting techniques of numerical analysis are utilized for construction of the thin beam cross-section contour. Although the slope vector with respect to the coordinate line on cross-section contour is not considered in nodal coordinates, the cross-section distortion could be adequately captured through selecting an appropriate degree of polynomial. The main advantages of the present ANCF thin beam element are that the computational costs are more inexpensive than the ANCF shell element due to less generalized coordinates, there is very small amount of input data because slope vectors of the cross-section are eliminated, and the cross-sectional stress distribution may always be continuous on account of the fact that the cross-section is not discretized into a set of finite elements. Moreover, the formulations of elastic forces and Jacobian of thin laminated composite beam are also derived based on the continuum mechanics. Finally, several examples including both static and dynamic problems are performed to verify the new element and meanwhile demonstrate its general characteristics.


1999 ◽  
Vol 122 (4) ◽  
pp. 498-507 ◽  
Author(s):  
Marcello Campanelli ◽  
Marcello Berzeri ◽  
Ahmed A. Shabana

Many flexible multibody applications are characterized by high inertia forces and motion discontinuities. Because of these characteristics, problems can be encountered when large displacement finite element formulations are used in the simulation of flexible multibody systems. In this investigation, the performance of two different large displacement finite element formulations in the analysis of flexible multibody systems is investigated. These are the incremental corotational procedure proposed in an earlier article (Rankin, C. C., and Brogan, F. A., 1986, ASME J. Pressure Vessel Technol., 108, pp. 165–174) and the non-incremental absolute nodal coordinate formulation recently proposed (Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge). It is demonstrated in this investigation that the limitation resulting from the use of the infinitesmal nodal rotations in the incremental corotational procedure can lead to simulation problems even when simple flexible multibody applications are considered. The absolute nodal coordinate formulation, on the other hand, does not employ infinitesimal or finite rotation coordinates and leads to a constant mass matrix. Despite the fact that the absolute nodal coordinate formulation leads to a non-linear expression for the elastic forces, the results presented in this study, surprisingly, demonstrate that such a formulation is efficient in static problems as compared to the incremental corotational procedure. The excellent performance of the absolute nodal coordinate formulation in static and dynamic problems can be attributed to the fact that such a formulation does not employ rotations and leads to exact representation of the rigid body motion of the finite element. [S1050-0472(00)00604-8]


Author(s):  
Marcello Berzeri ◽  
Marcello Campanelli ◽  
A. A. Shabana

Abstract The equivalence of the elastic forces of finite element formulations used in flexible multibody dynamics is the focus of this investigation. Two conceptually different finite element formulations that lead to exact modeling of the rigid body dynamics will be used. These are the floating frame of reference formulation and the absolute nodal coordinate formulation. It is demonstrated in this study that different element coordinate systems, which are used for the convenience of describing the element deformations in the absolute nodal coordinate formulation, lead to similar results as the element size is reduced. The equivalence of the elastic forces in the absolute nodal coordinate and the floating frame of reference formulations is shown. The result of this analysis clearly demonstrates that the instability observed in high speed rotor analytical models due to the neglect of the geometric centrifugal stiffening is not a problem inherent to a particular finite element formulation but only depends on the beam model that is used. Fourier analysis of the solutions obtained in this investigation also sheds new light on the fundamental problem of the choice of the deformable body coordinate system in the floating frame of reference formulation. A new method is presented and used to obtain a simple expression for the elastic forces in the absolute nodal coordinate formulation. This method, which employs a nonlinear elastic strain-displacement relationship, does not result in an unstable solution when the angular velocity is increased.


Author(s):  
R. Y. Yakoub ◽  
A. A. Shabana

Abstract By utilizing the fact that the absolute nodal coordinate formulation leads to a constant mass matrix, a Cholesky decomposition of the mass matrix can be used to obtain a constant velocity transformation matrix. This velocity transformation can be used to express the absolute nodal coordinates in terms of the generalized Cholesky coordinates. In this case, the inertia matrix associated with the Cholesky coordinates is the identity matrix, and therefore, an optimum sparse matrix structure can be obtained for the augmented multibody equations of motions. The implementation of a computer procedure based on the absolute nodal coordinate formulation and Cholesky coordinates is discussed in this paper. A flexible four-bar linkage is presented in this paper in order to demonstrate the use of Cholesky coordinates in the simulation of the small and large deformations in flexible multibody applications. The results obtained from the absolute nodal coordinate formulation are compared to those obtained from the floating frame of reference formulation.


Sign in / Sign up

Export Citation Format

Share Document