System state estimation by particle filtering for fault diagnosis and prognosis

Author(s):  
F Cadini ◽  
D Avram ◽  
E Zio
Author(s):  
Wuzhao Yan ◽  
Bin Zhang

This paper develops the uncertainty management of fault diagnosis and prognosis (FDP) in Lebesgue sampling (LS)-based framework with an application to helicopter drivetrain gearbox. In the developed LS-based FDP system, a particle filtering-based FDP algorithm, fault diagnostic model, failure prognostic model, and uncertainty management are discussed. Although uncertainty management has been developed in the traditional Riemann sampling (RS)-based FDP, it needs to be analyzed and managed in a totally different way since the working principle of LS-FDP is fundamentally different from that of RS-FDP. Inaccurate model structure and parameter, measurement noise, process noise, and unknown future loading are major contributing factors of uncertainties in LS-FDP framework. Since the noise in LS-based prognosis is a distribution on time axis while the noise in RS-based prognosis is one on fault state axis, this paper studies the transpose of noise distribution from state domain to time domain. In order to reduce the uncertainty in the prediction of remaining useful life (RUL), model noise and measurement noise terms are adjusted based on a short-term prediction with n steps and correction loop. In this scheme, the priori time distribution at the (t + n)-th Lebesgue state is predicted and stored at the t-th Lebesgue state. Then, at the (t + n)-th Lebesgue state, when the posteriori distribution becomes available, it is compared with the stored priori distribution to manage the uncertainty. The methods for uncertainty management are illustrated by a case study of the prediction of RUL of gearbox. The experimental results show that the uncertainty in the diagnosis and prognosis process of gearbox is properly managed and the confidence interval is decreased, which enhances the confidence level for decision-making and condition-based maintenance.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Guangxing Niu ◽  
Shije Tang ◽  
Zhichao Liu ◽  
Guangquan Zhao ◽  
Bin Zhang

Fault diagnosis and prognosis (FDP) plays more and more important role in industries FDP aims to estimate current fault condition and then predict the remaining useful life (RUL). Based on the estimation of health state and RUL, essential decisions on maintenance, control, and planning can be conducted optimally in terms of economy, efficiency, and availability. With the increase of system complexity, it becomes more and more difficult to model the fault dynamics, especially for multiple interacting fault modes and for fault modes that are affected by many internal and external factors. With the development of machine learning and big data, deep learning algorithms become important tools in FDP due to their excellent performance in data processing, information extraction, and automatic modeling. In the past a few years, deep learning algorithms demonstrate outstanding performance in feature extraction and learning fault dynamics. As emerging techniques, their powerful learning capabilities attract more and more attentions and have been extended to various applications. This work presents a novel diagnosis and prognosis methodology which combined deep belief networks (DBNs) and Bayesian estimation. In the proposed work, the DBNs are trained offline using available historical data. The fault dynamic model is then represented by the trained DBNs and modeling uncertainty is described by noise. The integration of DBNs with particle filtering is then developed to provide an estimation of the current fault state and predict the remaining useful life, which is very suitable and efficient for most nonlinear fault models. Experimental studies of lithium-ion batteries are presented to verify the effectiveness of the proposed solution.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 532
Author(s):  
Mohand Djeziri ◽  
Marc Bendahan

Fault diagnosis and failure prognosis aim to reduce downtime of the systems and to optimise their performance by replacing preventive and corrective maintenance strategies with predictive or conditional ones [...]


2017 ◽  
Vol 17 (19) ◽  
pp. 6418-6430 ◽  
Author(s):  
Tao Wang ◽  
Yigang He ◽  
Qiwu Luo ◽  
Fangming Deng ◽  
Chaolong Zhang

Sign in / Sign up

Export Citation Format

Share Document