The Use of Annual Maintenance Cost Limits for Vehicle Fleet Replacement

1976 ◽  
Vol 190 (1) ◽  
pp. 71-80 ◽  
Author(s):  
A. K. S. Jardine ◽  
T. S. Goldrick ◽  
J. Stender

SYNOPSIS The paper reports a study of the determination of an optimal replacement policy for transport fleet vehicles in the 7/8 ton load carrying capacity. Comments are made about the limitations of the constant economic life approach to replacement decisions. The concept of an Annual Maintenance Cost Limit approach is suggested and used to set replacement decisions for a fleet of 150 similar vehicles.

2014 ◽  
Vol 20 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Hamid Reza Golmakani ◽  
Morteza Pouresmaeeli

Purpose – The purpose of this paper is to determine optimal replacement threshold and optimal inspection interval for an item subjected to condition-based maintenance (CBM). The primarily assumption is that the item's failure replacement cost depends on the item's degradation state at which failure occurs and/or the time the item fails. The cost of inspection is also taken into account. Design/methodology/approach – The control limit replacement policy framework, already reported by some research referred to in this paper, is first extended to include the non-decreasing failure replacement cost assumption. Then, for alternative inspection intervals, replacement thresholds together with their associated total cost including the inspection cost are computed. By comparing the total costs, the optimal inspection interval and its corresponding optimal replacement threshold are simultaneously identified. Findings – The mathematical formulation required for the determination of optimal replacement threshold and optimal inspection interval for an item subjected to CBM under the assumption of non-decreasing failure cost is provided. Practical implications – In some practical situations where CBM is implemented, the failure replacement cost may depend on the time the failure happens and/or may depend on the system's degradation state. In addition, inspections often incur cost. Under such circumstances, findings of this paper can be utilized for the determination of optimal replacement threshold and optimal inspection interval for the underlying system. Originality/value – Using the approach proposed in this paper, one could obtain the optimal replacement threshold and the optimal inspection interval for a system subjected to CBM.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3013
Author(s):  
Leszek Czechowski

The paper deals with an examination of the behaviour of glued Ti-Al column under compression at elevated temperature. The tests of compressed columns with initial load were performed at different temperatures to obtain their characteristics and the load-carrying capacity. The deformations of columns during tests were registered by employing non-contact Digital Image Correlation Aramis® System. The numerical computations based on finite element method by using two different discrete models were carried out to validate the empirical results. To solve the problems, true stress-logarithmic strain curves of one-directional tensile tests dependent on temperature both for considered metals and glue were implemented to software. Numerical estimations based on Green–Lagrange equations for large deflections and strains were conducted. The paper reveals the influence of temperature on the behaviour of compressed C-profile Ti-Al columns. It was verified how the load-carrying capacity of glued bi-metal column decreases with an increase in the temperature increment. The achieved maximum loads at temperature 200 °C dropped by 2.5 times related to maximum loads at ambient temperature.


1994 ◽  
Vol 31 (4) ◽  
pp. 1123-1127 ◽  
Author(s):  
Yuan Lin Zhang

In this paper, a repairable system consisting of one unit and a single repairman is studied. Assume that the system after repair is not as good as new. Under this assumption, a bivariate replacement policy (T, N), where T is the working age and N is the number of failures of the system is studied. The problem is to determine the optimal replacement policy (T, N)∗such that the long-run average cost per unit time is minimized. The explicit expression of the long-run average cost per unit time is derived, and the corresponding optimal replacement policy can be determined analytically or numerically. Finally, under some conditions, we show that the policy (T, N)∗ is better than policies N∗ or T∗.


2001 ◽  
Vol 38 (02) ◽  
pp. 542-553 ◽  
Author(s):  
Ji Hwan Cha

In this paper two burn-in procedures for a general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair or a complete repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. During a burn-in process, with burn-in Procedure I, the failed component is repaired completely regardless of the type of failure, whereas, with burn-in Procedure II, only minimal repair is done for the Type I failure and a complete repair is performed for the Type II failure. In field use, the component is replaced by a new burned-in component at the ‘field use age’ T or at the time of the first Type II failure, whichever occurs first. Under the model, the problems of determining optimal burn-in time and optimal replacement policy are considered. The two burn-in procedures are compared in cases when both the procedures are applicable.


Sign in / Sign up

Export Citation Format

Share Document