An Accurate Low-Friction Pneumatic Position Control System

Author(s):  
J A Linnett ◽  
M C Smith

A fast, accurate, low-cost pneumatic control system in which the actuator can be programmed off-line to stop at any required position in its travel without the use of mechanical stops is described. A dual-mode control scheme switching two on/off valves is used. The system is able to position a 37 kg inertia load to within ± I mm at any point on a 300 mm stroke in less than a second.

1999 ◽  
Vol 11 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Tetsuya Akagi ◽  
◽  
Shujiro Dohta ◽  
Hisashi Matsushita ◽  

This paper describes an analysis of an opto-pneumatic control system and an improvement of control performance of the system. The opto-pneumatic system consists of an optical servo valve, a pneumatic cylinder and a cart. First, we built an analytical model of the system considering a nonlinear friction where exists in sliding parts. And we confirmed the validity of the proposed model by comparing theoretical results with experimental results of the characteristics of optical servo valve and cart position control. Then, we applied a sliding mode control scheme compensating a steady-state disturbance to multi- position control and follow-up control of a cart. By computer simulation, we confirmed that the control performance of opto-pneumatic control system was improved by using this control scheme.


2021 ◽  
Vol 33 (3) ◽  
pp. 883
Author(s):  
Yamato Kawamura ◽  
Junichiro Tahara ◽  
Tetsu Kato ◽  
Shun Fujii ◽  
Shoichiro Baba ◽  
...  

Author(s):  
Ayman Y. Yousef ◽  
M. H. Mostafa

<p>This paper presents a multiple unipolar stepper motor position control system using microcontroller (MCU) in anticlockwise and clockwise directions. The open loop controller of the implemented position control system for the three stepping modes of operation has been designed and developed with three stepper motors and without position feedback. The MCU is programmed using flowcode software package to generate the pulse signals with the desired stepping sequences and step angles. These pulse signals are necessary to drive the three stepper motors in the three drive modes (wave-step, full-step, and Half-step) according to the control algorithm. Three devices of 8 Channel Darlington Driver (chip ULN2803) are used to drive the three stepper motors and provide them with the sufficient current. The position control system has been simulated using proteus design suite software package and the controller has been implemented using low cost PIC16F877A (MCU). A reliable and accurate position control of the stepper motor is achieved by this position control system. </p>


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Dan-xu Zhang ◽  
Yang-wang Fang ◽  
Peng-fei Yang ◽  
You-li Wu ◽  
Tong-xin Liu

This paper proposed a finite time convergence global sliding mode control scheme for the second-order multiple models control system. Firstly, the global sliding surface without reaching law for a single model control system is designed and the tracking error finite time convergence and global stability are proved. Secondly, we generalize the above scheme to the second-order multimodel control system and obtain the global sliding mode control law. Then, the convergent and stable performances of the closed-loop control system with multimodel controllers are proved. Finally, a simulation example shows that the proposed control scheme is more effective and useful compared with the traditional sliding mode control scheme.


Sign in / Sign up

Export Citation Format

Share Document