Some Recent Developments in Pressure Vessel Design by Analysis

Author(s):  
D Mackenzie ◽  
J T Boyle ◽  
J Spence

Stress classification is a significant problem in pressure vessel design by analysis, especially if the design is based on solid finite element analysis. Stress categorization may be circumvented if the design is based on elastic-plastic or limit analysis but the degree of difficulty commonly associated with these types of analysis makes this approach unattractive to many designers. In this paper, a brief survey of a number of recent developments in pressure vessel design by analysis is discussed and assessed in light of Code design requirements.

Author(s):  
Michael W. Guillot ◽  
Jack E. Helms

Finite element analysis is widely used to model the stresses resulting from penetrations in pressure vessels to accommodate components such as nozzles and man-ways. In many cases a reinforcing pad is required around the nozzle or other component to meet the design requirements of Section VIII, Division 1 or 2, of the ASME Pressure Vessel Code [1]. Several different finite element techniques are currently used for calculating the effects of reinforcing pads on the shell stresses resulting from penetrations for nozzles or man-ways. In this research the stresses near a typical reinforced nozzle on a pressure vessel shell are studied. Finite element analysis is used to model the stresses in the reinforcing pad and shell. The commercially available software package ANSYS is used for the modeling. Loadings on the nozzle are due to combinations of internal pressure and moments to simulate piping attachments. The finite element results are compared to an analysis per Welding Research Council Bulletin 107 [2].


2014 ◽  
Author(s):  
M. Harbison ◽  
W. Koon ◽  
V. Smith ◽  
P. Haymon ◽  
D. Niole ◽  
...  

As a result of enhanced performance and mission requirements for Navy ships, ship design has dramatically increased the use of higher strength, lightweight steels and various local reinforcements, e.g., deck inserts, ring stiffeners, etc., in foundation designs to satisfy the design requirements for supporting machinery, consoles, and weapon systems among others. In additional to operational loading requirements, most of these foundations must also be designed to satisfy shock, vibration and other combat system requirements. While the same piece of equipment may be used in other ship contracts, the foundations are uniquely designed and require a separate analysis and drawing package. Computer modeling and Finite Element Analysis (FEA) have helped reduce the labor required to analyze foundations, but the high number of “unique” foundations as well as changes which necessitate a new analysis still create a large workload for engineers. This is further compounded by increased costs in production due to greater numbers of unique parts and materials that must be marked, stored, and retrieved later for fabrication. This goal of this project was to determine the cost-savings potential of leveraging past foundations work in designing, analyzing, and drawing foundations in the future. By the project’s conclusion Ingalls will have created a database for rapid access to previously-generated foundation information, the framework of which will be publicly available for all shipyards to populate with their own foundation information.


2017 ◽  
Vol 10 (25) ◽  
pp. 1-10
Author(s):  
Deepali Mathur ◽  
Mandar Sapre ◽  
Chintan Hingoo ◽  
◽  
◽  
...  

2016 ◽  
Vol 852 ◽  
pp. 588-594
Author(s):  
Gagan Gupta ◽  
V. Balasubramaniyan

Inner vessel in reactor assembly of sodium cooled fast reactor separates hot and cold pool sodium. The shape of inner vessel is optimized with reduced upper & lower shell diameters and toroidal redan for future Fast Breeder Reactor (FBR). This results in higher buckling strength and reduced thickness and hence reduced weight. To achieve the intricate toroidal shape with specified dimensional tolerances, a comprehensive technology development exercise was carried out successfully for the manufacture of inner vessel 30° sector. The achieved profile of the redan meets the specified dimensions and other design requirements. Spring-back observed in the sector was small. To verify the developmental exercise results, a finite element analysis (FEA) of forming of inner vessel sector was performed on finite element software ABAQUS. In this paper, FEA results and spring back are discussed. Spring back assessed is maximum at the center and relatively lower towards the edges for the redan with the chosen radius of 5980 mm.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3369 ◽  
Author(s):  
Won-Hyeon Kim ◽  
Kyoungjae Hong ◽  
Dohyung Lim ◽  
Jong-Ho Lee ◽  
Yu Jung ◽  
...  

Malocclusion is considered as a developmental disorder rather than a disease, and it may be affected by the composition and proportions of masseter muscle fibers. Orthodontics is a specialty of dentistry that deals with diagnosis and care of various irregular bite and/or malocclusion. Recent developments of 3D scanner and 3D printing technology has led to the use of a removable thermoplastic aligner (RTA), which is widely used due to its aesthetic excellence, comfortableness, and time efficiency. However, orthodontics using only an RTA has lower treatment efficacy and accuracy due to the differing movement of teeth from the plan. In order to improve these disadvantages, attachments were used, and biomechanical analyses were performed with and without them. However, there is insufficient research on the movement of teeth and the transfer of load according to the attachment position and shape. Therefore, in our study, we aimed to identify the optimal shape and position of attachments by analyzing various shapes and positions of attachments. Through 3D finite element analysis (FEA), simple tooth shape and mandibular canine shape were extracted in order to construct the orthodontics model which took into account the various shapes and positions of attachments. The optimal shape of a cylinder was derived through the FEA of simple tooth shape and analyzing various positions of attachments on teeth revealed that fixing the attachments at the lingual side of the tooth rather than the buccal side allowed for torque control and an effective movement of the teeth. Therefore, we suggest fixing the attachments at the lingual side rather than the buccal side of the tooth to induce effective movement of teeth in orthodontic treatment with the RTA in case of canine teeth.


Sign in / Sign up

Export Citation Format

Share Document