scholarly journals Oxygen-17 NMR Study of the Uranyl Ion. II. Correlation between17O NMR Chemical Shifts and Wavelengths of UV-Visible Absorption Bands of Uranyl Complexes

1985 ◽  
Vol 58 (3) ◽  
pp. 938-942 ◽  
Author(s):  
Woo-Sik Jung ◽  
Hiroshi Tomiyasu ◽  
Hiroshi Fukutomi
2004 ◽  
Vol 08 (02) ◽  
pp. 111-119 ◽  
Author(s):  
Henry J. Callot ◽  
Romain Ruppert ◽  
Christophe Jeandon ◽  
Sébastien Richeter

Aryl groups bound to the meso positions of porphyrins often react with neighboring groups, in particular ß-acyl groups to give highly diversified monomeric and dimeric new functionalized porphyrins. The products, whose meso-aryl ring approaches coplanarity with the porphyrin macrocycle, show large shifts of UV-visible absorption bands and various potentialities for building external chelating moieties and assembling oligoporphyrins.


2020 ◽  
Vol 49 (19) ◽  
pp. 6363-6367
Author(s):  
Soichiro Akagi ◽  
Sho Fujii ◽  
Noboru Kitamura

The strength of zero-magnetic-field splitting in the excited triplet states of metal complexes is reflected in the metal NMR chemical shifts.


2002 ◽  
Vol 602-603 ◽  
pp. 381-388 ◽  
Author(s):  
T Hoshiba ◽  
T Ida ◽  
M Mizuno ◽  
T Otsuka ◽  
K Takaoka ◽  
...  

2021 ◽  
Author(s):  
Nejeh Hannachi ◽  
Thierry ROISNEL ◽  
Faouzi HLEL

Abstract A new non-centrosymmetricorganotin (IV) hybrid compoundC5H14N2 [SnCl6] 2H2O was determined by single crystal X-ray diffraction at 150(2) K. Its crystal structure was solved by single crystal X-ray diffraction reveling that compound crystallizes in the orthorhombic system with Pbca space group with the following lattice parameters: a = 12.1486 (15) Å, b= 15.4571 (17) Å, c = 16.7610 (18) Å with Z = 8. The bonding between inorganic and organic entities in the compounds is realized by hydrogen bonding O−H…O ,O−H…Cl , NH • • • Cl, N-H…Cl and O−H…Cl. Finally,UV-visible absorption measurements exhibit two absorption bands (226 nm and 262 nm).The optical band gap (Eg) is deduced to be 3.46 Ev.


2006 ◽  
Vol 1 (11) ◽  
pp. 1934578X0600101
Author(s):  
Pawan K. Agrawal ◽  
Chandan Agrawal ◽  
Shravan Agrawal

The 13C NMR resonances corresponding to the C-Me group of C-6 and/or C-8 C-methylated-flavonoids absorb between 6.7–10.0 ppm and typically between 6.7–8.7 ppm. A comparative 13C NMR study reflects that the 13C NMR chemical shifts reported for 6-hydroxy-5-methyl-3′,4′,5′-trimethoxyaurone-4-O-α-L-rhamnoside from Pterocarpus santalinus and 8-C-methyl-5,7,2′,4′- tetramethoxyflavanone from Terminalia alata are inconsistent with the assigned structures, and therefore need reconsideration.


2002 ◽  
Vol 2 (3) ◽  
pp. 227-234 ◽  
Author(s):  
J. C. Mössinger ◽  
D. M. Rowley ◽  
R. A. Cox

Abstract. The UV-visible absorption spectrum of gaseous IONO2 has been measured over the wavelength range 245--415 nm using the technique of laser photolysis with time-resolved UV-visible absorption spectroscopy. IONO2 was produced in situ in the gas phase by laser flash photolysis of NO2/CF3I/N2 mixtures. Post flash spectra were deconvolved to remove contributions to the observed absorption from other reactant and product species. The resulting spectrum attributed to IONO2 consists of several overlapping broad absorption bands. Assuming a quantum yield of unity for IONO2 photolysis, model calculations show that during sunlit hours at noon, 53° N, the first order solar photolysis rate coefficient (J value) for IONO2 is 4.0 x 10-2 s-1.


2015 ◽  
Vol 1119 ◽  
pp. 101-105 ◽  
Author(s):  
Huda Abdullah ◽  
Norshafadzila Mohammad Naim ◽  
Noor Azwen Noor Azmy ◽  
Akrajas Ali Umar ◽  
Aidil Abdul Hamid ◽  
...  

The nanocomposite of polyaniline (PANI) and bimetallic nanoparticles of silver and iron were prepared by the oxidative polymerization of aniline and the reduction process of bimetallic compound with the presence of nitric acid and PVA. The nanocomposite thin films in various compositions were deposited using spin-coating technique. The films were characterized by UV-visible spectroscopy to study the optical and structural properties. The microphotograph from TEM image shows the nanospherical of Ag-Fe alloy particles in 5 – 25 nm diameter size. The sensitivity performance was tested using I-V measurement to obtain the changes of resistivity before and after the incubation with E. coli bacteria in water. UV-visible absorption bands show the single absorbance peak at 422 – 424 nm in each band indicating the Ag-Fe alloy nanoparticles form. I-V characteristic shows the sample which contains Fe-rich Ag-Fe alloy performed high sensitivity on E. coli.


Sign in / Sign up

Export Citation Format

Share Document