Design and Gas Adsorption Property of a Three-Dimensional Coordination Polymer with a Stable and Highly Porous Framwork

2001 ◽  
Vol 30 (4) ◽  
pp. 332-333 ◽  
Author(s):  
Kenji Seki ◽  
Satoshi Takamizawa ◽  
Wasuke Mori
2014 ◽  
Vol 14 (11) ◽  
pp. 5585-5592 ◽  
Author(s):  
Rashmi A. Agarwal ◽  
Soumya Mukherjee ◽  
E. Carolina Sañudo ◽  
Sujit K. Ghosh ◽  
Parimal K. Bharadwaj

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
YongChao Wang ◽  
YinBo Zhu ◽  
HengAn Wu

The porous characteristics of disordered carbons are critical factors to their performance on hydrogen storage and electrochemical capacitors. Even though the porous information can be estimated indirectly by gas adsorption experiments, it is still hard to directly characterize the porous morphology considering the complex 3D connectivity. To this end, we construct full-atom disordered graphene networks (DGNs) by mimicking the chlorination process of carbide-derived carbons using annealing-MD simulations, which could model the structure of disordered carbons at the atomic scale. The porous characteristics, including pore volume, pore size distribution (PSD), and specific surface area (SSA), were then computed from the coordinates of carbon atoms. From the evolution of structural features, pores grow dramatically during the formation of polyaromatic fragments and sequent disordered framework. Then structure is further graphitized while the PSD shows little change. For the obtained DGNs, the porosity, pore size, and SSA increase with decreasing density. Furthermore, SSA tends to saturate in the low-density range. The DGNs annealed at low temperatures exhibit larger SSA than high-temperature DGNs because of the abundant free edges.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 40 ◽  
Author(s):  
Kang-Kai Liu ◽  
Biao Jin ◽  
Long-Yue Meng

In this study, three-dimensional glucose/graphene-based aerogels (G/GAs) were synthesized using the hydrothermal reduction and CO2 activation method. Graphene oxide (GO) was used as a matrix, and glucose was used as a binder for the orientation of the GO morphology in an aqueous media. We determined that G/GAs exhibited narrow mesopore size distribution, a high surface area (763 m2 g−1), and hierarchical macroporous and mesoporous structures. These features contributed to G/GAs being promising adsorbents for the removal of CO2 (76.5 mg g−1 at 298 K), CH4 (16.8 mg g−1 at 298 K), and H2 (12.1 mg g−1 at 77 K). G/GAs presented excellent electrochemical performance, featuring a high specific capacitance of 305.5 F g−1 at 1 A g−1, and good cyclic stability of 98.5% retention after 10,000 consecutive charge-discharge cycles at 10 A g−1. This study provided an efficient approach for preparing graphene aerogels exhibiting hierarchical porosity for gas adsorption and supercapacitors.


2014 ◽  
Vol 43 (19) ◽  
pp. 7263-7268 ◽  
Author(s):  
Tiffany M. Smith ◽  
Michael Tichenor ◽  
Yuan-Zhu Zhang ◽  
Kim R. Dunbar ◽  
Jon Zubieta

The three-dimensional [Co3(OH)2(H2O)2(aptet)4] exhibits magnetic properties consistent with a ferrimagnetic chain with the non-compensating resultant moment of one Co(ii) per trinuclear Co(ii) subunit and ac magnetic susceptibility indicative of glassy-like magnetic behavior.


2009 ◽  
Vol 19 (41) ◽  
pp. 7625 ◽  
Author(s):  
M. Samy El-Shall ◽  
Victor Abdelsayed ◽  
Abd El Rahman S. Khder ◽  
Hassan M. A. Hassan ◽  
Hani M. El-Kaderi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document