Kinetics of complexation reaction of iron (II) ion with water-soluble hydrazones derived from 2-(3-sulfobenzoyl)pyridine.

1985 ◽  
pp. 1770-1772
Author(s):  
Hajime ISHII ◽  
Tsugikatsu ODASHIMA ◽  
Takeshi AITA
2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


1985 ◽  
Vol 74 (1) ◽  
pp. 87-89 ◽  
Author(s):  
Kevin Johnson ◽  
Gordon L. Amidon ◽  
Stefano Pogany

Author(s):  
Mohammad Al-Hwaiti ◽  
Hamidi Abdul Aziz ◽  
Mohd Azmier Ahmad ◽  
Reyad Al-Shawabkeh

Adsorption techniques for industrial wastewater treatment rich in heavy metals and aqueous solutions of water-soluble such as Cl−, F−, HCO3−, NO3−, SO2−4, and PO3−, often include technologies for toxicity removals. The recent advancement and technical applicability in the treatment of chlorine and chlorinated compounds from industrial wastewater are reviewed in this article. Chlorine and chlorinated compounds are among the common discharged constituents from numerous industries. They can be carcinogenic or naturally toxic and can pose issues to aquatic ecosystems and human beings. Thus, elimination of chlorides and chlorinated compounds from water or wastewater is inevitable to get rid of the problem. Several techniques are being applied for the reduction of chlorine and chlorinated compounds in water. These include biodegradation, photochemical, adsorption, chemical, electrochemical, photo-electrochemical, membrane, supercritical extraction and catalytic method. Chlorine can react with various organic and inorganic micro-pollutants. However, the potential reactivity of chlorine for specific compounds is small, and only minor variations in the structure of the parent compound are anticipated in the water treatment process under typical conditions. This paper reviews different techniques and aspects related to chlorine removal, the types of chlorine species in solution and their catalyst, chlorine fate and transport into the environment, electrochemical techniques for de-chlorination of water, kinetics, mechanisms of reduction of chlorinated compounds, and kinetics of the electrochemical reaction of chlorine compounds. Keywords: Industrial waste, Kinetics, Wastewater, Water purification


2012 ◽  
Vol 520 ◽  
pp. 174-180 ◽  
Author(s):  
Gang Chen ◽  
Guian Wen ◽  
Neil Edmonds ◽  
Peng Cao ◽  
Yi Min Li

A water soluble binder system is used to prepare Ti-6Al-4V and NiTi pre-alloyed powder feedstock. The binder dissolution and transport kinetics through the porous powder skeleton are studied for various powder morphologies and powder loadings from 60 to 69.5 vol.%. The binder removal behaviours are evaluated with different debinding time intervals. The focus of this work is to investigate the influences of shaping pressure, specimen thickness and water bath temperature on the binder extraction behaviour.


2007 ◽  
Vol 80 (7) ◽  
pp. 1331-1334
Author(s):  
Kazuo Mukai ◽  
Tomoe Isozaki ◽  
Shin-ichi Nagaoka
Keyword(s):  

2018 ◽  
Vol 133 (3) ◽  
pp. 1549-1562 ◽  
Author(s):  
K. G. Gorbovskiy ◽  
A. I. Ryashko ◽  
A. I. Kazakov ◽  
A. M. Norov ◽  
A. I. Mikhaylichenko

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Qamruzzaman ◽  
Abu Nasar

AbstractThe kinetics of the degradation of metribuzin by water-soluble colloidal MnO2 in acidic medium (HClO4) were studied spectrophotometrically in the absence and presence of surfactants. The experiments were performed under pseudo-first-order reaction conditions in respect of MnO2. The degradation was observed to be of the first order in respect of MnO2 while of fractional order for both metribuzin and HClO4. The rate constant for the degradation of metribuzin was observed to decrease as the concentration of MnO2 increased. The anionic surfactant, sodium dodecyl sulphate (SDS), was observed to be ineffective whereas the non-ionic surfactant, Triton X-100 (TX-100), accelerated the reaction rate. However, the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), caused flocculation with oppositely-charged colloidal MnO2; hence further study was not possible. The catalytic effect of TX-100 was discussed in the light of the available mathematical model. The kinetic data were exploited to generate the various activation parameters for the oxidative degradation of metribuzin by colloidal MnO2 in the absence as well as the presence of the non-ionic surfactant, TX-100.


Sign in / Sign up

Export Citation Format

Share Document