scholarly journals Studies on Organic Pigment of Phthalocyanine Series. XI. The Formation of γ-Form Copper Phthalo cyanine and Copper Phthalocyanine Monosulphate

1967 ◽  
Vol 70 (4) ◽  
pp. 499-503 ◽  
Author(s):  
Tatsuo SEKIGUCHI ◽  
Yoshie BANSHO ◽  
Osamu KANEKO
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract There are several commercially significant metal complex organic pigments that are based on first row transition metals. The most important of these are the copper phthalocyanine blue and green pigments which find virtually universal use in paints, printing inks, and plastics. These pigments are of such prime importance that they are dealt with separately in three other chapters in this series. This paper describes a group of pigments that are complexes of iron, copper, nickel, and cobalt with polydentate colored ligands of azo, azomethine, oxime, and isoindoline chemical types. The oldest metal complex organic pigment that still finds some use is CI Pigment Green 8, an octahedral oxime iron complex. In the 1970s and 1980s, there was considerable industrial research effort aimed at developing metal complex pigments based on azomethine and isoindoline structures, many of which were found to offer excellent lightfastness, good solvent resistance and thermal stability, although they exhibited rather dull colors. However, several products provide brilliant effects when used in combination with metallic and pearlescent pigments in automotive paints. Many of the pigments introduced have since been withdrawn by the original manufacturers, but a few remain on the market. The synthesis of metal complex pigments generally involves the preparation of the colored ligand, which is then complexed with the transition metal ion


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Copper phthalocyanine is the dominant blue organic pigment by far, used extensively in printing ink, paint, plastics, and a range of other applications. A historical perspective of the development of phthalocyanine pigments, from their original serendipitous discovery, through the characterization of their molecular structures, to their development as pigments, is discussed in this chapter and in the separate chapter entitled Phthalocyanines: General Principles. Copper phthalocyanine exhibits polymorphism. The α- and β-forms are the most important crystal phases used as pigments, while the ε-form has only minor significance. Although structurally complex, the synthesis of copper phthalocyanine is relatively straightforward, involving readily available commodity starting materials to provide the products in high yield. After-treatments are required not only to convert the crude pigment into an appropriate pigmentary physical form, but also to provide stability towards crystal phase change and flocculation in application.


Author(s):  
Yoshinori Fujiyoshi

The resolution of direct images of biological macromolecules is normally restricted to far less than 0.3 nm. This is not due instrumental resolution, but irradiation damage. The damage to biological macromolecules may expect to be reduced when they are cooled to a very low temperature. We started to develop a new cryo-stage for a high resolution electron microscopy in 1983, and successfully constructed a superfluid helium stage for a 400 kV microscope by 1986, whereby chlorinated copper-phthalocyanine could be photographed to a resolution of 0.26 nm at a stage temperature of 1.5 K. We are continuing to develop the cryo-microscope and have developed a cryo-microscope equipped with a superfluid helium stage and new cryo-transfer device.The New cryo-microscope achieves not only improved resolution but also increased operational ease. The construction of the new super-fluid helium stage is shown in Fig. 1, where the cross sectional structure is shown parallel to an electron beam path. The capacities of LN2 tank, LHe tank and the pot are 1400 ml, 1200 ml and 3 ml, respectively. Their surfaces are placed with gold to minimize thermal radiation. Consumption rates of liquid nitrogen and liquid helium are 170 ml/hour and 140 ml/hour, respectively. The working time of this stage is more than 7 hours starting from full LN2 and LHe tanks. Instrumental resolution of our cryo-stage cooled to 4.2 K was confirmed to be 0.20 nm by an optical diffraction pattern from the image of a chlorinated copper-phthalocyanine crystal. The image and the optical diffraction pattern are shown in Fig. 2 a, b, respectively.


Author(s):  
Hikoya Hayatsu ◽  
Sanae Mimaki ◽  
Nao Ishizaki ◽  
Keiji Wakabayashi ◽  
Chitose Sugiyama

2020 ◽  
Vol 89 (3) ◽  
pp. 30201 ◽  
Author(s):  
Xi Guan ◽  
Shiyu Wang ◽  
Wenxing Liu ◽  
Dashan Qin ◽  
Dayan Ban

Organic solar cells based on planar copper phthalocyanine (CuPc)/C60 heterojunction have been characterized, in which a 2 nm-thick layer of bathocuproine (BCP) is inserted into the CuPc layer. The thin layer of BCP allows hole current to tunnel it through but blocks the exciton diffusion, thereby altering the steady-state exciton profile in the CuPc zone (zone 1) sandwiched between BCP and C60. The short-circuit current density (JSC) of device is limited by the hole-exciton scattering effect at the BCP/CuPc (zone 1) interface. Based on the variation of JSC with the width of zone 1, the exciton diffusion length of CuPc is deduced to be 12.5–15 nm. The current research provides an easy and helpful method to determine the exciton diffusion lengths of organic electron donors.


Sign in / Sign up

Export Citation Format

Share Document